Курсовая работа: Гальванические элементы
В 2003 году было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией "Норильский никель" в области водородной энергетики и топливных элементов. Это привело к учреждению в 2005 году Национальной инновационной компании «Новые энергетические проекты», которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твердым полимерным электролитом мощностью 1 кВт.
Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведется, появятся, видимо, в 2010—2015 годах.
Д) Применение топливных элементов
Стационарные приложения:производство электрической энергии (на электрических станциях), аварийные источники энергии, автономное электроснабжение,
Транспорт: автомобильные топливные элементы Honda, см Honda FCX, электромобили, автотранспорт, морской транспорт, железнодорожный транспорт, горная и шахтная техника, вспомогательный транспорт (складские погрузчики, аэродромная техника и т.д.)
Бортовое питание: авиация, космос, подводные лодки, морской транспорт,
Мобильные устройства: портативная электроника, питание сотовых телефонов, зарядные устройства для армии.
Преимущества водородных топливных элементов
Топливные элементы обладают рядом ценных качеств.
Это: высокий КПД, экологичность, компактные размеры
Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, повысить время действия приборов и оборудования.
Е) Проблемы топливных элементов
Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.
Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.
Существует множество способов производства водорода, но в настоящее время около 50% водорода ,производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. . Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, т.к. он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика, Производство водорода). Например, средняя цена электроэнергии в США выросла в 2007 г. до $0,09 за кВт., тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04- $0,07 (см. статью Ветроэнергетика, или AWEA). В Японии киловатт электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. Т.е. с ростом цен на энергоносители производство водорода электролизом воды становится более конкурентоспособным.
К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО, отравляющий катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160°С в топливе может присутствовать 1%СО.
Цена некоторых водородных топливных элементов пока остаётся высокой. Но в будущем цена будет снижаться при организации массового производства топливных элементов.
Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры и более высокая себестоимость энергии. Возникает проблема "курицы и яйца" - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?
Появились и новые накопители энергии – электрохимические конденсаторы. Они состоят из двух электродов с высокоразвитой поверхностью и проводника II рода между ними.
Виды химических источников тока
Тип Катод Электролит Анод Напряжение, В
Марганцево-цинковый элемент MnO2 KOH Zn 1.56
Марганцево-оловянный элемент MnO2 KOH Sn 1.65
Марганцево-магниевый элемент MnO2 MgBr Mg 2.00
Свинцово-цинковый элемент PbO2 H2SO4 Zn 2.55
Свинцово-кадмиевый элемент PbO2 H2SO4 Cd 2.42
Свинцово-хлорный элемент PbO2 HClO4 Pb 1.92
Ртутно-цинковый элемент HgO2 KOH Zn 1.36
Ртутно-кадмиевый элемент HgO2 KOH Cd 1.92