Курсовая работа: Некоторые уравнения математической физики в частных производных
Возвращаясь к задаче (1), (9), (10), заключаем, что функции
(23)
являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций j(x) и y(x).
Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений
(24)
также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)
(25)
Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке , разлагается в ряд Фурье
(26)
где
(27)
Если функции j(x) и y(x) удовлетворяют условиям разложения в ряд Фурье, то
(28)
(29)
Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить
(30)
чем полностью определяется функция (24), дающая решение исследуемой задачи.
Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция должна быть дважды дифференцируемой, а - один раз дифференцируемой.
1.4 Решение уравнений
1. Найти решение уравнения:
, если , .
Решение:
Так как , а , то
,
где . Таким образом, , или .
2. Найти форму струны, определяемой уравнением в момент , если
3. , .
Решение:
Имеем