Курсовая работа: Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
Конант и Хелл, исследуя кислотность в уксусной кислоте как растворителе, предложили измерять кислотность в такой цепи:
Ptхлоранил | Н+ в уксусной кислоте|| KCl в воде|Hg2 Cl2 ,Hg (2.3.2)
Хлоранил представляет собой эквимолекулярную смесь С6 (ОН)2 С14 и С6 С14 02 . С помощью этого вещества можно измерять кислотность очень кислых растворов. В воде потенциал хлоранилового электрода против каломельного равен 0,418 В. Конант и Хелл для своей цели приняли, что потенциал хлоранилового электрода против каломельного равен не 0,418, а 0,566. Они считали, что разница на 0,148 В соответствует фазовому потенциалу,который возникает на границе уксусной кислоты и водного раствора, и изменению нормального потенциала хлоранилового электрода. Но это предположение произвольно. Эта разница очень плохо оправдана. Конант и Хелл приняли ее на том основании, что в результате введения поправки константа диссоциации пиридина в уксусной кислоте равна константе диссоциации у уксусной кислоты в воде. Равенство констант принято ими на основании изучения электропроводности растворов. Однако это предположение сомнительно.
Кислотность, определенную по Конанту и Хеллу, принято обозначать pHHAc .
2.4 Определение кислотности методом Гамметта
Основываясь на том, что, как свидетельствуют экспериментальные данные, константы кислотности оснований (катионных кислот) сравнительно-мало изменяются при переходе от растворителя к растворителю, Гамметт предложил оценивать кислотность любых растворов по степени превращения индикатора основания в его ионную форму.
Известно, что величина рН водных растворов может быть определена про помощи индикаторов. В основе индикаторного метода лежит уравнение
pH=pK+lg(aAi /aHAi ) (2.4.1)
где aAi и aHAi активности ионной и молекулярной формы индикатора.
В случае, если индикатором является основание, уравнение приобретает вид:
pH=pK+lg(aBi /aBHi ) (2.4.2)
Различия в окраске основания и катионной кислоты, соответствующей этому основанию, или кислоты и аниона этой кислоты позволяют установить кислотность. Метод основан на том, что по окраске оценивают концентрацию кислой и основной форм индикатора. Сравнение окраски в данном растворе с окраской раствора, содержащего предельную форму индикатора в условиях, когда индикатор полностью превращен либо в кислоту, либо в основание, производится в колориметре. Особенно удобны для этих целей одноцветные индикаторы, у которых одна из форм окрашена, а другая не окрашена.
Не будем подробно останавливаться на методике индикаторного определения рН. Отметим только, что при правильном осуществлении этот метод определения рН достаточно точен. Однако применение индикаторного метода не исключает ошибок, связанных со стандартизацией рН. Кроме того, индикаторный метод имеет ряд специфических ограничении, с которыми следует считаться.
Во-первых, если раствор содержит окислители или восстановители, то пользоваться колориметрическим методом следует с осторожностью, так как при этом может произойти окисление индикатора, и окраска (и ее интенсивность) будет изменяться не за счет изменения рН, а за счет окисления индикатора. К тому же многие вещества одновременно являются кислотно-основными и окислительно-восстановительными индикаторами и реагируют на наличие в растворах окислительно-восстановительных систем.
Во-вторых, индикаторы ограниченно применимы в небуферных системач, так как каждый индикатор — это или кислота., или основание, и прибавление их к небуферным системам создает определенную кислотность. В этих случаях фактически измеряется та величина рН, которая создалась в результате растворения индикатора.
В-третьих, окраска индикатора изменяется в зависимости от ионной силы раствора.
В-четвертых, многие индикаторы реагируют с белками, поэтому в белковых системах, в биологических средах индикаторный метод может при вести к так называемым белковым ошибкам.
Возвратимся к основному вопросу — к определению единой кислот ности. Согласно Гамметту, окраска одного индикатора изменяется в различных растворителях только в связи с изменением абсолютной кислотности растворов, а константа индикатора основания в любом растворителе остается неизменной. Соотношение основной и кислой форм индикатора изменяется только в связи с изменением кислотности раствора. Свою функцию кислотности Гамметт обозначает Н0 , так как индикаторы основания не имеют электрического заряда. По Гамметту
Н0 =pKa +lg(cB /cBH + ) (2.4.3)
где pKa - показатель константы диссоциации индикатора как катионной кислоты в воде. Эта константа принимается неизменной.
В дальнейшем были введены другие функции кислотности. В тех случаях, когда применяется в качестве индикатора незаряженная кислота и соответствующее ей основание имеет отрицательный заряд, функцию кислотности обозначают Н(-) .
Метод Гамметта чрезвычайно прост и не связан с измерением потенциалов, не имеет осложнений в связи с возникновением потенциалов на границе двух фаз. Поэтому он представляет значительный интерес и нашел широкое применение.
Однако последние работы показали, что нет оснований считать, что в действительности величина Н0 передает кислотность неводных растворов. Предположение о том, что константа индикатора не изменяется при переходе от растворителя к растворителю, очень сомнительно.
Предположение Гамметта о неизменности констант кислотности индикаторов-оснований равносильно предположению, что константы кислотности оснований выражены через абсолютные активности, отнесенные к водному раствору как к стандарту.
Искомой величиной является абсолютная активность ионов лиония аМН + отнесенная к водному раствору протонов (ионов гидроксония) как к стандарту. Константа кислотности основания через абсолютные активности выразится так:
КАосн =аВ + (М) (aB /aBH + ) (2.4.4)
Заменив в уравнении (2.4.4) величины aB и aBH + выражениями a=cполучим:
KA осн =аH + ( M ) (cB (2.4.5)
где аH + ( M ) искомая абсолютная активность сольватированного протона, отнесенная к его состоянию в бесконечно разбавленном, водном растворе.