Дипломная работа: Исследование свойств полимерметаллических комплексов на основе гидрогеля полиакриламид - акриловая кислота - полиэтиленимин без иммобилизованного металла и с ионами Ni2+
Полимерные комплексы могут быть получены методом матричной полимеризации [5]. Многочисленные экспериментальные результаты свидетельствуют о том, что при этом образуются более высокоорганизованные полимерные комплексы по сравнению с "комплексами смешения", поскольку матрица контролирует скорость образования "дочерней цепи", ее длину, химическое строение и структуру. Полимерный комплекс образуется лишь при достижении некоторой критической степени полимеризации "дочерней цепи", после чего растущая цепь ассоциируется с матрицей и начинается собственно матричная полимеризация. В последнее время матричные реакции рассматриваются как способ синтеза композиционных материалов, наиокойпозитов, система матрица – наночастица [6].
Полимерные комплексы могут быть получены на границе раздела фаз. Способ заключается в осуществлений реакций комплексообразования на границе раздела двух несмешивающихся жидкостей, например, бензол-вода, в которых растворены взаимодействующие компоненты [7-9]. Полимерные комплексы образуются в виде тонких планок на границе раздела фаз. Условия осуществления реакций комплексообразования на границе раздела фаз приводят к новым свойствам этих комплексов, большей степени взаимодействия и, как следствие, к большей гидрофобности и растворимости этих комплексов в углеводородных и ароматических растворителях; к более высокой структурной организации комплексов; к осуществлению реакций комплексообразования, которые не могут протекать в растворе; к осуществлению реакции комплексообразования в некотором временном интервале, в то время как реакции комплексообразования в растворе протекают практически мгновенно; к способу синтеза тонких пленок и мембран полимерных комплексов в одну стадию.
1.1.2 Свойства полимерных гидрогелей
В зависимости от функционального состава комплексы могут существовать за счёт системы Н-связей или электростатических контактов. На рисунке 1 представлена кинетика набухания ВПС в воде, синтезированных на основе сшитого полиакриламида в присутствии различного количества линейного П2М5ВП (а) и сшитой полиакриловой кислоты (б) - в присутствии П2М5ВП (кривая 1) и его бетаиновой формы (ПБ-21) (кривая 2). Увеличение содержания катионного полиэлектролита в объеме полиакриламидной сетки приводит к увеличению скорости и коэффициента набухания, что можно объяснить электростатическим отталкиванием заряженных пиридиниевых групп друг от друга, приводящее к увеличению размера нейтральной сетки за счет распирающего давления противоионнов на стенки гидрогелей. В случае, когда трехмерный каркас не построен из полиакриловой кислоты, включающий макромолекулы ПБ-21, набухание в протекает в две стадии: на первой происходит набухание самой сетки, а на второе увеличение объема сетки может быть обусловлено разворачиванием клубков линейного полибетаина. Коэффициент набухания сетки ПАК и П2М5ВП (рис.1) в пять раз ниже по сравнению с ВПС ПАК-ПБ-21. Во взаимопроникающей сетке ПАК и П2М5ВП часть карбоксильных групп вступает в сильное электростатическое взаимодействие, с полиоснованием формируя двутяжные структуры, что не дает возможность для свободного набухания гидрогеля.
Рис. 1. Кинетика набухания ВПС в воде: а) ГПАА-1 ( I ); 111 AA - Z (2) и ГПАА-3 (3); б) ГПАК-П2М51Ш (4) и Г'ПАК-ПБ (5)
Из-за рыхлой структуры полибетаины не способны формировать двутяжные структуры в кислой и слабокислой областях рН среды. Структура ВПС ГПАК-ПБ-21 представляет собой интерполимерный комплекс преимущественно дефектного строения. Наличие значительного числа гидратирующихся карбоксильных групп трехмерного каркаса и находящегося в нем полибетаина, имеющего кроме того и хлорид противоионы, приводит к значительному росту коэффициента набухания сетки ГПАК-ПБ-21.[10]
1.1.3 Взаимопроникающие сетки полимерных гидрогелей
Взаимопроникающие Полимерные Сетки (ВПС) это комбинации из двух и более полимерных сеток, из которых наименьшая полимеризована и/или сшита непосредственно с другой. Обычно в систему ВПС включены две сетки. ВПС могут иметь сходные характеристики с полимерными смесями, более специфические и комбинированные свойства могут быть достигнуты путем взаимопроникновения двух сеток. Результатом взаимопроникновения двух разнородных сеток может стать возникновение несмешивающихся фаз или фаз разделения в системе ВПС. Однако взаимопроникновение сеток не изменяет свойств каждой сетки. Пропорции и свойства каждого полимера могут варьироваться независимо. Обычно, взаимопроникновение сеток увеличивает число физических связей в системе, при этом достигается наивысшая плотность поперечных связей и увеличивается механическая прочность системы.
С топологической точки зрения, ВПС тесно связаны с полимерными смесями и различными сополимерами. ВПС можно отличить от других мультиполимерных систем тремя путями: 1) ВПС набухают, но не растворяются в растворителях; 2) текучесть и деформация во времени подавлены по причине блокирования поперечных связей в ВПС; и 3) ВПС могут показывать характерные морфологии из-за взаимной несовместимости.
Исследования биомедицинских ВПС были сфокусированы на изучении синтеза ВПС, морфологического поведения, свойств и промышленного применения.
Классификация.
В зависимости от способа получения, ВПС можно классифицировать следующим образом:
Последовательные ВПС: В последовательных ВПС вначале синтезирована полимерная сетка I. Мономер II плюс сшивающий агент и инициатор поглощены сеткой I и полимеризованы в ней.
Одновременно взаимопроникающие сетки: Мономеры и/или преполимеры плюс сшивающие агенты и инициаторы обеих сеток смешиваются и сопровождаются одновременной полимеризацией через неинтерферирующие реакции.
Латексовые ВПС: Полимеры сделаны в форме латексов. Так, каждая составляющая частица – микро-ВПС. Обычно, в латексовых ВПС организована структура.
Меняющиеся ВПС: В меняющихся ВПС полный состав или плотность поперечных связей варьируется от одного участка к другому на макроскопическом уровне. Один способ приготовления этих материалов включает частичное набухание полимерной сетки I мономером II, сопровождаемое быстрой полимеризацией прежде, чем наступит диффузионное равновесие. Таким образом, пленка может быть сделана с полимерной сеткой I преимущественно на одной поверхности и полимерной сеткой II на другой поверхности, с меняющимся составом повсюду в полимере.
Термопластичные ВПС: Эти материалы используют физические поперечные связи, которые могут включать цепные переплетения и кристаллические области. Как термопласты, они могут плавиться при повышенных температурах.
ВПС гидрогели это сшитые полимерные сетки, которые способны абсорбировать большие количества воды и набухать до равновесного состояния. Эти сетки могут быть физически и химически сшиты для сохранения их структурной целостности.
ВПС гидрогели имеют множество применений особенно в области медицины. Из-за способности поглощать большие объемы воды гели ВПС очень схожи с натуральными тканями и часто показывают хорошую биосовместимость. Эти характеристики позволяют использовать гидрогели в качестве систем доставки лекарств (пилюли, капсулы и т. д.), биодатчиков, контактных линз, суперабсорбентов и искусственных тканей. Также, способность поглощать воду делает гидрогели хорошими кандидатами для применения в качестве мембран, в которых вода позволяет раствору проходить через гели.
ВПС гидрогели могут быть классифицированы как нейтральные и ионные гидрогели в зависимости от типа повторяющихся частей и побочных цепочек на полимерной основе. Например, нейтральный гидрогель, используемый в ВПС, такой как поливиниловый спирт, не имеет ионизируемых групп на полимерной основе или боковых цепях. Таким образом, его коэффициент набухания зависит от pH или от ионной силы. Ионные гидрогели, наоборот, гидрогели с ионизируемыми функциональными группами. Они в свою очередь могут быть классифицированы на анионные и катионные гидрогели в зависимости от природы ионизируемых частей на их основе.
Анионные группы содержат кислотные группы, которые ионизируются когда pH окружающей среды повышается выше их pKa. Анионные ВПС гели набухают при высоких значениях pH, а при низких значениях pH происходит их коллапс. В неионизированном состоянии водород карбоксильной группы может быть отдан ближайшей богатой электронами группе для образования водородных связей, которые приводят к формированию полимерных комплексов.
Полиакриловая кислота (ПАК) и полиметакриловая кислота (ПМАК) это типичные примеры анионных гидрогелей, использованных в ВПС. Аналогично, сополимеры ПАК и ПМАК с полиэтиленгликолем и поли 2-гидроксиэтил метакрилатом были использованы в ВПС как высвобождающий лекарства носитель. Сополимеры ПМАК с поли N-изопропилакриламидом (ПNИПАА) показывает интересную связь с pH и термочувствительной кинетикой набухания и была предложена для доставки лекарств и биомедицинского применения.
Катионные гели обычно содержат аминогруппы, которые образуют –NH3+ когда pH окружающей среды становится ниже pKa. Диметиламиноэтил метакрилат и диэтиламиноэтил метакрилат (ДЭАЭМ) – типичные катионные мономеры, используемые в ВПС. Катионные гидрогели набухают при низких pH, и разрушаются (сжимаются) при высоких. Таким образом, они могут быть использованы в доставке инсулина.
В последние годы значительное внимание исследований было сфокусировано на способности ВПС гидрогелей изменять свой объем и свойства в ответ на такие физические параметры, как рН, температура, ионная сила и электрическое поле. Благодаря их резкому набуханию и синерезису в ответ на физические условия, эти полимеры исследованы для многих биомедицинских и фармацевтических применений, включая контролирование доставки лекарств, молекулярное разделение, разведение тканевых субстратов, системы контроля активации ферментов и материалов для улучшенной биосовместимости. Мы можем достигать комбинации свойств двух полимерных сеток путем взаимопроникновения цепочек. Поскольку здесь нет химических связей между двумя компонентами системы, каждая сетка может сохранять свои свойства и свойства каждой сетки могут варьироваться независимо от другой. Взаимопроникновение двух сеток может также привести к намного более высокой механической прочности по отношению к гомополимерной сетке.[11-15]
1.1.4 Применение полимерных гидрогелей
Определяющим фактором длительного использования полимерных гидрогелей с иммобилизованными металлами является сохранение комплекса металла в ходе реакций, которым они могут подвергнуться в процессе использования. Так, например, большинство полимернанесенных катализаторов с течением времени теряют первоначальную активность и не могут быть использованы повторно. Для уменьшения потери активности катализаторов предлагается увеличивать концентрации лигандов в полимере; использование вместо макросетчатых бусинок микропористых смол с равномерным распределением функциональных групп внутри матрицы.
Одним из областей применения полимерных комплексов является их использование как структурообразователей почв с целью предотвращения ветровой и водной эрозии.[16]
Рассматривается [17] возможность использования интерполиэлектролитных комплексов в качестве эффективных связующих для различных дисперсий, в особенности, для почв с целью предотвращения распространения радиоактивных загрязнений. Самые различные полиэлектролиты, такие как полиакриловая, полиметакриловая, полистиролсульфоновая, полифосфорная кислоты и другие могут использоваться как полианионы.
Показано возможное использование минеральных сорбентов в процессах очистки нефтяных пятен. Применение различных методов ликвидации нефтяных загрязнений должно производиться комплексно, с учетом конкретных физико-химических свойств разлитой нефти, с соблюдением экологических требований.[18]
Процессы образования различных типов полимерных комплексов – продуктов специфических взаимодействий функциональных полимеров с различными классами соединений (комплементарными полимерами, ионами металлов, ПАВ, лекарственных веществ и т.д.), так и сами полимерные комплексы могут найти применение в самых различных областях науки и техники. Причем, в некоторых областях, как, например, извлечение ионов металлов и органических молекул, различные мембранные процессы, полимерный катализ достигнуты серьезные результаты.
1.2 Высокомолекулярный полиэтиленимин
1.2.1 Свойства высокомолекулярного полиэтиленимина
Полимерные гели представляют собой набухшие в растворителе длинные полимерные цепи, сшитые друг с другом поперечными ковалентными связями (сшивками) в единую пространственную сетку. Такие гидрогели способны поглощать и удерживать в себе огромное количество воды: до 2 кг на 1 г сухого полимера. Благодаря этому свойству их называют молекулярными губками. Столь высокая способность поглощать воду характерна для полиэлектролитных гелей, т.е. гелей, содержащих заряженные группы.
В водной среде они диссоциируют с образованием заряженных звеньев и низкомолекулярных противоионов так же, как молекулы соли распадаются в воде на катионы и анионы. Однако при диссоциации в молекуле полимера ионы одного заряда, например положительные, остаются связанными с цепью, а отрицательные (т.е. противоионы) оказываются в свободном состоянии, в растворителе. Звенья полимерной сетки, одноименно заряженные, отталкиваются друг от друга, и потому цепи, исходно свернутые в клубки, сильно вытягиваются. В результате образец геля значительно увеличивается в размерах, т.е. набухает, поглощая растворитель.
Низкомолекулярные противоионы тоже играют существенную роль в набухании. Они свободно перемещаются в растворителе внутри геля, иначе говоря, приобретают трансляционную энтропию. Но покинуть его они не могут, так как это приведет к нарушению электронейтральности. Таким образом, поверхность образца геля оказывается непроницаемой для противоионов. Будучи запертыми внутри, они стараются занять как можно больший объем, чтобы получить существенный выигрыш в энтропии трансляционного движения. В результате создается распирающее осмотическое давление, вызывающее значительное набухание геля, подобно тому, как давление газа надувает" воздушный шар. Итак, сильное набухание полиэлектролитных гелей в воде обусловлено как электростатическим отталкиванием одноименно заряженных звеньев, так и осмотическим давлением противоионов. Если количество заряженных звеньев невелико, гель в основном набухает за счет осмотического давления противоионов [19-21].