Дипломная работа: Проектирование установки вакуумного напыления пленок КР1095 ПП1

5.1 Требования по ТБ при работе на установках вакуумного напыления

5.2 Пожарная безопасность

Список литературы


Введение

В настоящее время трудно назвать какую-либо область науки, техники или промышленного производства, где бы ни применялись тонкие пленки. Основными методами получения тонкопленочных слоев являются термическое испарение в вакууме и распыление ионной бомбардировкой. Особенно широкое применение эти методы нашли в новой и весьма перспективной отрасли электронной техники – микроэлектронике.

Микроэлектроника – это новое научно-техническое направление электроники, которая с помощью комплекса физических, химических, схемотехнических, технологических и других методов и приемов решает проблему создания высоконадежных и экономичных микроминиатюрных электронных схем и устройств.

Микроэлектронику часто отождествляют с микроминиатюризацией радиоэлектронной аппаратуры, хотя эти два понятия существенно и принципиально отличаются друг от друга.

Если главной целью микроминиатюризации аппаратуры является обеспечение минимальных размеров и веса устройств, созданных из дискретных малогабаритных деталей, то центральной задачей микроэлектроники является проблема создания максимально надежных элементов, схем, устройств и разработка надежных и дешевых способов их соединений путем использования качественно новых принципов изготовления электронной аппаратуры. К числу этих принципов относят отказ от использования дискретных компонентов и формирование в микрообъемах сложных интегральных схем непосредственно из исходных материалов. Что же касается уменьшения размеров и веса элементов, схем и устройств, то эта задача не является главной целью микроэлектроники, а решается ею попутно.

Таким образом, микроэлектроника является высшей, качественно новой ступенью микроминиатюризации. Ее основная задача – повышение надежности электронной аппаратуры, которое обеспечивается применением особо чистых исходных материалов и проведением технологического процесса в условиях, исключающих возможность загрязнения, минимальным количеством внутрисхемных соединений, малыми габаритами, компактностью узлов и блоков.

Интегральная электроника развивается не как новая или обособленная область техники, а как результат обобщений многих технологических приемов, ранее используемых в полупроводниковом производстве и при изготовлении тонкопленочных покрытий. В соответствии с этим в интегральной электронике определились два главных направления: полупроводниковое и тонкопленочное.

Создание интегральной схемы на одной монокристаллической полупроводниковой (пока только кремневой) пластине является естественным развитием отработанных в течение последних десятилетий принципов создания полупроводниковых приборов. Создание интегральной схемы на некристаллической (изоляционной) подложке (в качестве которой обычно используется стекло или стеклокерамический материал) является дальнейшим развитием широко распространенных вакуумных методов нанесения тонкопленочных покрытий.

Эти два направления в создании интегральных схем отнюдь не исключают, а скорее, наоборот, взаимно дополняют и обогащают друг друга. Более того, до сегодняшнего дня не созданы интегральные схемы, использующие какой-либо один вид технологии. Даже монолитные кремниевые схемы, изготовляемые в основном по полупроводниковой технологии, одновременно применяют такие методы, как вакуумное осаждение пленок алюминия для получения внутрисхемных соединений, т.е. методы, на которых основана тонкопленочная технология.

В связи с непрерывным совершенствованием как полупроводниковой, так и тонкопленочной технологий, а также ввиду все большего усложнения электронных схем, что выражается в увеличении числа и типов компонентов, следует ожидать, что в ближайшем будущем будет происходить процесс слияния полупроводниковых и тонкопленочных схем и большинство сложных электронных схем будут изготовляться на основе совмещенной технологии. При этом можно получить такие параметры и такую надежность схем, которые нельзя достичь при использовании каждого вида микросхем в отдельности.

Схемы, изготовленные по совмещенной технологии, имеют ряд несомненных достоинств. Так, например, имеется возможность получения на малой площади резисторов с большой величиной сопротивления и малым температурным коэффициентом. Контроль скорости осаждения в процессе получения резисторов позволяет изготовлять их с очень высокой точностью. Резисторам, полученным путем осаждения пленок, не свойственны токи утечки через подложку даже при высоких температурах, а сравнительно большая теплопроводность препятствует возможности появления в схемах участков с повышенной температурой.

Возможность комбинирования оптимальных активных полупроводниковых компонентов с оптимальными пассивными пленочными компонентами без компромиссов в случае применения той или иной технологии допускается большое разнообразие и большую свободу при конструировании микросхем с использованием совмещенной технологии.

В развитии тонкопленочных гибридных интегральных микросхем наблюдается рост уровня интеграции с одновременным увеличением функциональных возможностей микросхем.

В области технологии находят широкое применения: групповые методы обработки (одновременное осаждения пленок на большое количество подложек, одновременное селективное травление и т.д.), бескорпусные активные элементы со специальными выводами, благодаря чему повышается уровень механизации сборочных работ и снижается себестоимость изделий;новые материалы и новые методы осаждения тонких пленок (ионно-плазменное осаждение, осаждение из паровой и газовой фазы и др.), благодаря чему значительно расширяются диапазоны пассивных тонкопленочных элементов;электрохимические процессы окисления и восстановления, использование электронных пучков и оптических квантовых генераторов, благодаря которым возникает возможность изготовлять прецизионные резисторы и конденсаторы с очень малыми допусками (0,1–0,5%).

Большим достоинствам тонкопленочной технологии является ее гибкость, выражающаяся в возможности выбора материалов с оптимальными параметрами и характеристиками и в получении по сути дела любой требуемой конфигурации и параметров пассивных элементов. При этом допуски, с которыми выдерживаются отдельные параметры элементов, могут быть доведены до 1–2%, что особенно важно в тех случаях, когда точная величина номиналов и стабильность параметров пассивных компонентов имеют решающее значение.

Нанесение тонких пленок на основание, обладающее высокими изолирующими свойствами и низкой диэлектрической проницаемостью, с одной стороны, позволяет свести к минимуму паразитные емкостные связи между отдельными элементами схемы и, с другой стороны, устраняет присущие монокристаллическим подложкам ограничения по выбору материала и размеров подложки, закладывая тем самым возможность изготовления схем с большим количеством элементом на одной подложке, что необходимо для реализации сложных электронных устройств.


1. Общая часть

1. 1 Цель дипломного проекта

По мере возрастания степени интеграции увеличивается удельный вес отказов, связанных с дефектами металлизации, диффузии и других операций. Распределение отказов ИМС можно изобразить диаграммой (рис. 1)

Рис. 1 Диаграмма распределения отказов

Отказы, связанные с процессами в металлических слоях, являются основными для ИМС при повышенных нагрузках (25 – 26%). Причина отказов может состоять в разрыве проводников на ступеньках окисла, в коррозии металла, во взаимодействии окисла с металлом при локальных увеличениях температуры, в замыкании Al на Si, через поры окисла при низкотемпературной рекристаллизации, в разрывах проводников и нарушении контакта с Si вследствие электродиффузии-процесса переноса вещества при высоких плотностях тока. Отказы из-за электродиффузии становятся существенными при плотностях тока свыше 5*104 А/см2 и температуре выше 150 0 С.

При нагреве через границу раздела Al + Si в контактных окнах происходит взаимная диффузия Al и Si, причем Si диффундирует в Al быстрее и достигает концентрации ≈ 1, 5 am%.

Цель моего дипломного проекта – избежать подобного явления, применением других распыляемых материалов, позволяющих снизить растворимость Si в Al.

1 .2 Краткие технические сведения об изделии КР1095ПП1

Изделие КР1095ПП1 представляет собой большую интегральную схему (БИС) и обеспечивает преобразование мощности потребления электрической энергии переменного тока промышленной частоты (50,0 ± 2,5) Гц в частоту следования импульсов с нормированным значением коэффициента преобразования, предела допустимой погрешности преобразования, амплитуды и формы выходных импульсов. БИС изготавливается по технологии КМДП с поликремниевым затвором.

К-во Просмотров: 217
Бесплатно скачать Дипломная работа: Проектирование установки вакуумного напыления пленок КР1095 ПП1