Дипломная работа: Разработка тепловизионного канала СП-1 АСДМ "Лидар"

dR(л макс T)/dл= 1,286*10-15 Т5 Вт/см2 *мкм

где температура Т выражена в Кельвинах.

Следовательно, объект при температуре окружающей среды Т = 290 К имеетмаксимум спектральной плотности потока излучения при л макс =10 мкм, в то время как Солнце, эффективная (кажущаяся) температура которого ~ 6000 К, имеет максимум при л макс =0,5 мкм. Заметим, что жидкий азот (Т = 77К) имеет максимум при л макс =38 мкм.

Закон смещения Вина наглядно объясняет сдвиг в сторону коротких волн максимума (видимого или невидимого) излучения тел по мере их нагрева.

Закон, получаемый интегрированием закона Планка по л в пределах от нуля до бесконечности называется законом Стефана – Больцмана. Он определяет интегральную плотность (мощность) потока излучения черного тела при температуре Т:

RT =уT4


у=2р5 k4 /15c2 h3 =5,67*1012 Вт/(см24 )=5,67*108 Вт(м24 ) – постоянная Стефана – Больцмана.

Рис. 1.1 Спектральное распределение поверхностной плотности потока излучения различных источников: 1 – Солнце, Т – 6000 К; 2 – излучение черного тела при температуре окружающей среды Т – 290 К; 3 – излучение черного тела при температуре Т=77 К

Физически RТ представляет собой площадь под кривой dR (л, T)/dл=fT (л).

Если закон планка проинтегрировать по диапазону длин волн ла – лb , то мы получим мощность излучения черного тела в этом диапазоне при температуре Т:

где ла – нижняя граница диапазона, лb – верхняя граница.


Рис. 1.2. Поверхностная плотность потока излучения в спектральной полосе

1.1.3 Приемники инфракрасного излучения

Приемники излучения являются незаменимыми элементами инфракрасных приборов и предназначены для преобразования энергии оптического излучения в электрическую (или какую-либо другую) энергию, более удобную для непосредственного измерения.

По принципу действия приемники делят на две большие группы: тепловые и фотонные. Тепловые приемники основаны на изменении тех или иных свойств при изменении температуры, образующейся под воздействием падающего лучистого потока, независимо от его спектрального состава. В фотонных приемниках имеет место прямое взаимодействие между падающими фотонами и электронами материала чувствительного элемента.

Среди тепловых приемников в последнее время большое распространение получили микроболометрические матрицы с максимумом чувствительности в диапазоне 8ч12 мкм. Принцип действия болометров основан на изменении электрического сопротивления полупроводника или металла при изменении температуры, вызванном воздействием падающего лучистого потока. Микроболометрические матрицы не требуют охлаждения.

Среди фотонных приемников распространены фоторезисторы, принцип действия которых основан на внутреннем фотоэффекте, заключающемся в образовании свободных электронов в твердом теле и изменении его электропроводности при поглощении квантов излучения. Различают три группы фоторезисторов: пленочные, монокристаллические и легированные примесями. К первой группе относят сернисто-свинцовые (PbS), селенисто-свинцовые (PbSe) и теллуристо-свинцовые (РbТе) фоторезисторы. Вторую группу составляют фоторезисторы из антимонида индия (lnSb) и теллуридов ртути и кадмия (HgСdTe); третью группу – фоторезисторы из германия (Ge), легированного различными примесями.

Рис. 1.3. Энергетические зоны в фоторезисторе

В фоторезисторе дискретные энергетические уровни, которые занимают электроны, образуют зоны. Наивысшую энергетическую зону, полностью заполненную электронами, называют валентной. Более высокую энергетическую зону, которая может быть и не заполненной электронами, называют зоной проводимости. Проводимость материала определяется электронами, находящимися в зоне проводимости. В соответствии с квантово-механическими условиями между валентной зоной и зоной проводимости находится запрещенная энергетическая зона.

Проводник характеризуется частичным заполнением зоны проводимости; в изоляторе запрещенная энергетическая зона настолько широка (3 эВ и более), что энергия валентных электронов недостаточна для их перехода в зону проводимости, поэтому в ней отсутствуют электроны (рис. 1.3 б). Полу проводник занимает промежуточное положение между проводником и изолятором. В нем ширина запрещенной зоны настолько мала (доли электронвольта), что даже при комнатной температуре энергия некоторых валентных электронов достаточна для их перехода через запрещенную зону в зону проводимости (рис. 1.3 в). Состояния, ранее занятые этими электронами, называют дырками.

Под действием электрического или магнитного полей дырки могут перемещаться аналогично электронам, но в противоположном направлении. Следовательно, в чистом полупроводнике переход электрона в зону проводимости создает электронно-дырочную пару носителей заряда, повышающую проводимость. Этот вид проводимости называют собственной проводимостью. Падающие на полупроводник фотоны отдают свою энергию валентным электронам, которые переходят в зону проводимости и образуют электронно-дырочные пары, изменяющие проводимость полупроводника (явление фото проводимости).

Пороговую длину волны л0 , за которой энергия фотона недостаточна дли создания электронно-дырочной пары, называют длинноволновой границей и определяют следующим отношением: л0= 1,24/Езапр. мкм, где Езапр. – ширина запрещенной зоны, эВ.

Приемники излучения с собственной проводимостью имеют ширину запрещенной зоны при комнатной температуре Езапр. ≥0,18 эВ, поэтому для них л0 < 7 мкм. При охлаждении ширина запрещенной зоны уменьшается и длинноволновая граница приемника увеличивается. Такой же эффект может быть получен введением небольших количеств примесей других чистых полупроводников; этот процесс называют легированием, а полученные материалы – примесными полупроводниками.

Если примесный атом имеет меньшее количество валентных электронов чем основной материал, то недостающие ковалентные связи обеспечиваются соседними атомами; в результате этого возникают дырки в валентной области, которые становятся зарядоносителями и образуют материал р-типа.

Примеси, приводящие к недостатку электронов, называют акцепторными, так как они акцептируют (забирают) электроны из основного материала.

Если примесный атом имеет большее количество валентных электронов, чем основной материал, то он действует как донор электронов и в результате образуется материал n-типа. Во всех приемниках инфракрасного излучения используют материал р-типа.

К-во Просмотров: 330
Бесплатно скачать Дипломная работа: Разработка тепловизионного канала СП-1 АСДМ "Лидар"