Дипломная работа: Система управления механизмом зажигания

Микропроцессорные технологии уже давно вышли за рамки персональных компьютеров и суперЭВМ. Во всем мире широкое распространение получили микроконтроллеры, как в автоматизированных системах управления, так и в бытовых электроприборах, так как они отличаются надежностью, высокой степенью интеграции и небольшой стоимостью.

В данном дипломном проекте я планирую рассмотреть возможность применения микроконтроллеров в системах зажигания двигателей внутреннего сгорания. А так же описать этапы разработки этой системы зажигания и привести необходимую документацию для организации производства устройства, либо его изготовления в условиях малого предприятия.


1. Системы управления на микроконтроллерах

1.1 Применение микроконтроллеров в современной промышленности

Микроконтроллеры являются наиболее массовыми представителями микропроцессорной электроники. Интегрируя в одном корпусе микросхемы высокопроизводительный процессор, оперативную и постоянную память, а также набор периферийных устройств, микроконтроллеры позволяют с минимальными затратами реализовать широкую номенклатуру систем управления различными объектами и процессами.

Структурная организация, набор команд и аппаратурнопрограммные средства ввода/вывода информации микроконтроллеров лучше всего приспособлены для решения задач управления и регулирования в приборах, устройствах и системах автоматики, а не для решения задач обработки данных. Микроконтроллеры не являются классическими электронно – вычислительными машинами, так как физическая и логическая разделённость памяти программ и памяти данных исключает возможность модификации или замены (перезагрузки) прикладных программ микроконтроллеров во время работы, что сильно затрудняет их использование в качестве универсальных средств обработки данных.

Поэтому микроконтроллеры находят широкое применение в промышленной автоматике, контрольно измерительной технике, аппаратуре связи, бытовой технике и многих других областях человеческой деятельности.

1.2 Принципы построения систем управления на микроконтроллерах

В устройствах управления объектами (контроллерах) на основе микроконтроллеров аппаратурные средства и программное обеспечение существуют в форме неделимого аппаратурно программного комплекса. При проектировании контроллеров приходится решать одну из самых сложных задач разработки, а именно задачу оптимального распределения функций контроллера между аппаратурными средствами и программным обеспечением. Решение этой задачи осложняется тем, что взаимосвязь и взаимовлияние аппаратурных средств и программного обеспечения в микропроцессорной технике претерпевают динамичные изменения. Если в начале развития микропроцессорной техники определяющим было правило, в соответствии с которым аппаратурные средства обеспечивают производительность, а программное обеспечение дешевизну изделия, то в настоящее время это правило нуждается в серьезной корректировке. Так как микроконтроллер представляет собой стандартный массовый (относительно недорогой) логический блок, конкретное назначение которого определяет пользователь с помощью программного обеспечения, то с ростом степени интеграции и, следовательно, функциональнологических возможностей микроконтроллера резко понижается стоимость изделия в пересчете на выполняемую функцию, что в конечном итоге и обеспечивает достижение высоких техникоэкономических показателей изделий на микроконтроллере. При этом затраты на разработку программного обеспечения изделия в 210 раз превышают (за время жизни изделия) затраты на приобретение и изготовление аппаратурных средств.

В настоящее время наибольшее распространение получил методологический прием, при котором весь цикл разработки контроллеров рассматривается как последовательность трех фаз проектирования:

1. анализа задачи и выбора аппаратурных средств контроллера;

2. разработки прикладного программного обеспечения;

3. комплексирования аппаратурных средств и программного обеспечения в прототипе контроллера и его отладки.

Фаза разработки программного обеспечения, т.е. фаза получения прикладных программ, в свою очередь, разбивается на два существенно различных этапа:

1. "от постановки задачи к исходной программе";

2. "от исходной программы к объектному модулю".

Этап разработки "от исходной программы к объектному модулю" имеет целью получение машинных кодов прикладных программ, работающих в микроконтроллере. Этот этап разработки прикладного программного обеспечения легко поддается формализации и поддержан всей мощью системного программного обеспечения микроконтроллера, направленного на автоматизацию процесса получения прикладных программ. В состав средств системного программного обеспечения входят трансляторы с различных алгоритмических языков высокого уровня, ассемблеры, редакторы текстов, программыотладчики, программы документаторы и т.д. Наличие всех этих системных средств придает инженерной работе на этом этапе проектирования контроллеров характер ремесла, а не инженерного творчества. Так как в конечном изделии (контроллере) имеются только "голый" микроконтроллер и средства его сопряжения с объектом, то выполнять отладку разрабатываемого прикладного программного обеспечения на нем невозможно (изза отсутствия средств ввода, вывода, ОЗУ большой емкости и операционной системы), и, следовательно, разработчик вынужден обращаться к средствам вычислительной техники для выполнения всех формализуемых стадий разработки: трансляции, редактирования, отладки, загрузки объектных кодов в программируемую постоянную память микроконтроллера.

Совсем по другому выглядит инженерный труд на этапе разработки программного обеспечения "от постановки задачи к исходной программе", так как он практически не поддается формализации и, следовательно, не может быть автоматизирован.

Проектная работа здесь носит творческий характер, изобилует решениями, имеющими "волевую" или "вкусовую" окраску, и решениями, продиктованными конъюнктурными соображениями. В силу перечисленных обстоятельств именно на этапе проектирования "от постановки задачи к исходной программе" разработчик сталкивается с наибольшим количеством трудностей.

Качество получаемого прикладного программного обеспечения контроллера всецело зависит от уровня проектных решений, принятых на этапе разработки "от постановки задачи к исходной программе". Уровень проектных решений в свою очередь изза отсутствия теории проектирования программируемых контроллеров определяется только опытом, квалификацией и интуицией разработчика. Однако накопленный опыт убеждает в том, что систематический подход к процессу разработки прикладных программ для контроллеров обеспечивает достижение хороших результатов даже начинающими разработчиками.

Типовая структура микропроцессорной системы управления показана на рис. 1.1 и состоит из объекта управления, микроконтроллера и аппаратуры их взаимной связи.

Рисунок 1.1 Структура цифровой системы управления на основе МК


Микроконтроллер путем периодического опроса осведомительных слов (ОС) генерирует в соответствии с алгоритмом управления последовательности управляющих слов (УС). Осведомительные слова это сигналы состояния объекта (СС), сформированные датчиками объекта управления, и флаги. Выходные сигналы датчиков вследствие их различной физической природы могут потребовать промежуточного преобразования на аналогоцифровых преобразователях (АЦП) или на схемах формирователей сигналов (ФС), которые чаще всего выполняют функции гальванической развязки и формирования уровней двоичных сигналов стандарта ТТЛ.

Микроконтроллер с требуемой периодичностью обновляет управляющие слова на своих выходных портах. Некоторая часть управляющего слова интерпретируется как совокупность прямых двоичных сигналов управления (СУ), которые через схемы формирователей сигналов (усилители мощности, реле, оптроны и т.п.) поступают на исполнительные механизмы (ИМ) и устройства индикации. Другая часть управляющего слова представляет собой упакованные двоичные коды, которые через цифро аналоговые преобразователи (ЦАП) воздействуют на исполнительные механизмы аналогового типа. Если объект управлении использует цифровые датчики и цифровые исполнительные механизмы, то наличие ЦАП и АЦП в системе необязательно.

В состав аппаратуры связи, которая как правило, строится на интегральных схемах серии ТТЛ, входит регистр флагов, на котором фиксируется некоторое множество специфицируемых признаков как объекта управления, так и процесса работы контроллера. Этот регистр флагов используется в качестве аппаратурного средства реализации механизма взаимной синхронизации относительно медленных и вероятностных процессов в объекте управления и быстрых процессов в контроллере. Регистр флагов доступен как контроллеру, так и датчикам. Вследствие этого он является удобным местом фиксации сигналов «готов»/«ожидание» при передачах с квитированием или сигналов «запрос прерывания»/«подтверждение» при взаимодействии контроллера и объекта в режиме прерывания. Если МКсистема имеет многоуровневую систему прерываний, то регистр флагов содержит схему упорядочивания приоритетов.

Для аппаратурной реализации временных задержек, формирования сигналов требуемой частоты и скважности в состав аппаратуры связи включают программируемые интервальные таймеры в том случае, если их нет в составе микроконтроллера или их число недостаточно.

Законы функционирования микропроцессорной системы управления со структурой, показанной на рис. 1 всецело определяются прикладной программой, размещаемой в резидентной памяти программ микроконтроллера. Иными словами, специализация контроллера типовой структуры на решение задачи управления конкретным объектом осуществляется путем разработки прикладных программ микроконтроллера и аппаратуры связи микроконтроллера с датчиками и исполнительными механизмами объекта.


2. Разработка системы управления механизмом зажигания

К-во Просмотров: 393
Бесплатно скачать Дипломная работа: Система управления механизмом зажигания