Дипломная работа: Вещество как объект изобретения: особенности определения патентоспособности, составления формулы и описания изобретения
Гражданский кодекс Российской Федерации
Правила составления, подачи и рассмотрения заявки на выдачу патента на изобретение
Изобретение
База (базы) данных
Введение
Очень важным событием для изобретателей, особенно химиков, в нашей стране стало введение Патентного закона РФ. Если защита патентом всех видов объектов изобретений имела место и ранее, то для химического соединения она отсутствовала. Введение в качестве объекта технического решения объекта "продукт", который отсутствовал в советский период, является шагом по пути унификации в области промышленной собственности с учетом международного права, а также национального законодательства индустриальных стран.
В последнее время в большом объеме стали патентовать изобретения в области химии, медицины, биотехнологии и т.п., например, биологически активные добавки, различные лекарственные препараты, и т.п. Кроме того, исследования и разработки в области фармацевтической химии, биотехнологии, т.е. значительно развивающихся в последнее время отраслей промышленности, требует значительных инвестиций и являются весьма продолжительными. Получение патента в этом случае обеспечит инвестору защиту его прав.
Целью дипломной работы является изучение одного из объектов изобретения – вещества. В работе рассмотрены вопросы, качающиеся характеристики веществ, их классификации с учетом наработанной практики патентования, а также основные принципы составления формулы и описания заявки на изобретение.
Глава 1. Литературный обзор
1. Вещества
1.1. Понятие вещества в научной сфере
В соответствии с определением, "вещество – вид материи, которая обладает массой покоя, оно состоит из элементарных частиц – электроны, протоны, нейтроны, мезоны и др. Химия изучает главным образом вещества, организованные в атомы, молекулы, ионы, радикалы. Такие вещества принято подразделять на простые и сложные (химические соединения). Простые вещества образованы атомами одного химического элемента. Сложные вещества образованы различными элементами и могут иметь состав постоянный (стехиометрические соединения или дальтониды) или изменяющийся в некоторых пределах (нестехиометрические соединения - бертоллиды)" [1].
Введение в качестве объекта технического решения объекта "продукт", который отсутствовал в советский период, является шагом по пути унификации в области промышленной собственности с учетом международного права, а также национального законодательства индустриальных стран [2].
Можно выделить три типа веществ:
1. Элементы (простые вещества).
2. Индивидуальные химические соединения (стехеометрические соединения или дальтониды).
3. Неиндивидуальные химические соединения (нестехеометрические или бертоллиды).
Еще совсем недавно мнения химиков не были столь определенными, когда речь шла о веществах-бертоллидах.
В соответствии с определением из "Химической энциклопедии" 1961 года (том IV, стр.951), "химические соединения согласно представлениям классической химии – химические индивидульные вещества, состоящие из атомов различных элементов. В последние годы многие ученые разделяют новые представления о химических соединениях, полагая, что к ним относятся все вещества, в которых атомы одного или различных элементов соединены между собой тем или иным типом химической связи. Важные признак химического соединения – однородность. Это сближает их с растворами, однако состав последних может изменяться (неограниченно или в определенных пределах) без нарушения однородности, в то время как состав химического соединения в огромном большинстве случаев следует постоянным простым и кратким отношениям (закон постоянства состава и закон постоянства кратных отношений или стехиометрический закон)".
Как видно, здесь химические соединения должны представлять собой однородные системы и отвечать законам стехиометрии.
В течение четверти века все области химии (неорганическая, органическая, химия катализа полимеров, биоорганическая, аналитическая) достигли больших экспериментальных успехов в создании новых видов и типов образований, в теоретических и аналитических интерпретациях эксперимента, а главное – успели философски осмыслить новые данные, что в химии, как и в любой другой естественной науке, приводит к пересмотру понятийного аппарата.
Были сделаны фундаментальные открытия.
Твердые растворы часто образуются не в соответствии со стехеометрическими соотношениями, но они подходят под понятие "химические соединения", если последние определить как сложное гомогенное вещество, свойства которого не могут быть переведены в свойства одной из его составных частей изменением состава. Твердые растворы могут образовывать при высокой температуре сверхструктуры, которые также рассматриваются как химические соединения.
Позже и гомогенность перестала быть необходимым условием существования химического соединения. Высокомолекулярные соединения, природные и синтетические полимеры, не являются гомогенными образованиями [4].
Полимеры не являются индивидуальными веществами, они представляют собой смеси плимергомологов с различным содержанием функциональных групп, и их параметры имеют статистический характер [4]. Биополимеры – природные высокомолекулярные соединения, из которых построены клетки живых организмов, и межклеточные вещества, связывающие их между собой, также являются химическими соединениями, но не индивидуальными.
Если носителями химических свойств дальтонидной формы являются замкнутые макроситсемы – молекулы и подобные им частицы, то носителями свойств веществ бертоллидной формы являются открытые, способные к "бесконечному" росту агрегированных атомов, которые часть представляют собой макросистемы – монокристаллы и подобные им "гигантские молекулы".
К бертоллидам относят следующие типы веществ:
1. Твердые металлические сплавы, носителем свойств которых является первичный монокристалл или твердая фаза.
2. Твердые фазы переменного состава, в частности, окислы металлов, гидриды и соли. Носители их химических свойств – также монокристаллы.
3. К бертоллидам близки элементы, являющиеся как металлами, так и металлоидами. Кристаллы с металлической связью, например, кристаллы железа, меди, золота и т.д., так же как и кристаллы с ковалентной связью типа алмаза и графита.
4. Жидкие растворы, окислителями свойств которых являются сольваты.
5. Коллоиды, носителем свойств которых являются мицеллы.
6. Поверхностные соединения, образующиеся в результате химического взаимодействия кристалла как единого целого с молекулами или анионами.