Доклад: Обоснование эффективности зон повышенной проницаемости в плоской части цилиарного тела
Исследование образцов в контрольной группе выявило значительно меньшее проникновение радиоактивного йода внутрь глазного яблока. Так, содержание I131 во внутренних структурах глаза было настолько малым, что исследование излучения навесок не выявило значимого повышения радиоактивности внутриглазных структур (рис. 3).
Рис. 3. Интенсивность сцинтилляций в минуту образцов биологических тканей в течение первых 4, 8,12 и 16 часов после введения раствора с радиоактивной меткой у кроликов без ЛЦК (фоновое значение 40-50 сцинтилляций в минуту).
Особенно хорошо это видно на графике, иллюстрирующем значения сцинтилляций стекловидного тела в целом в сравнении с аналогичными значениями у кроликов опытной группы (рис. 2). Так, согласно данным исследования, через 4 часа после введения витреальная концентрация I131 в опытной группе превышает контроль в 1,87 раза, через 8 часов в – 1,76, а через 12 часов – в 2,45. По истечении 16 часов превышение содержания I131 в стекловидном теле опытной группы больше контроля в 2,94 раза.
В то же время в процентном соотношении количество радиоактивной метки очень незначительно и составляет тысячные доли процента, что может быть недостаточно для развития значимого клинического эффекта при введении лекарственных средств в лечебной практике. По нашему предположению, значительное количество введенной субконъюнктивально радиоактивной метки адсорбируется в системный кровоток через сосуды конъюнктивы, цилиарного тела, а также, возможно, и хориоидеи. Поэтому нами была сформирована четвертая группа из 10 животных, которым за 1 час до введения препарата и далее в течение всего периода до забоя с интервалом в 30 минут производились инстилляции 10% раствора фенилэфрина, обладающего мощным сосудосуживающим действием.
На правых глазах животных данной группы производилось нанесение коагулятов по описанной выше методике, левые глаза служили контролем. Забой пяти животных осуществлялся через 1 час после введения препарата, оставшихся пяти – через 3 часа. При исследовании радиоактивности образцов стекловидного и цилиарного тела было отмечено быстрое проникновение препарата внутрь глаза уже через час после инъекции, причем в опыте в стекловидном теле обнаружено 0,2% от введенного количества радиоактивной метки (в среднем 1190 сцинтилляций в минуту), что превышает значения радиоактивности в конрольной группе в 4,76 раза (250 сцинтилляций в минуту). Через 3 часа эти показатели уменьшились и составили в среднем 420 и 179 сцинтилляций в минуту соответственно (0,07% и 0,03% от введенного субконъюнктивально количества I131 ). Кроме того, было отмечено некоторое накопление радиоактивной метки в цилиарном теле: через 1 час в опытной группе оно составило 307 сцинтилляций, в контроле – 117, а через 3 часа – 112 и 78 соответственно (рис. 4).
Рис. 4. Интенсивность сцинтилляций в минуту стеловидного и цилиарного тела в течение первых 1 и 3 часов после введения раствора с радиоактивной меткой у кроликов на фоне инстилляций фенилэфрина в опыте и контроле (фоновое значение 40-50 сцинтилляций в минуту).
Выводы
Методика введения I131 в подконъюнктивальное пространство в области коагуляции плоской части цилиарного тела показала, что очаговая элиминация пигментного эпителия в зоне pars plana приводит к значительному повышению проницаемости этой части оболочки глаза для лекарственных препаратов. Максимальное значение содержания активного вещества в стекловидном теле достигается при использовании сосудосуживающих препаратов, позволяющих временно уменьшить кровоток в сосудах конъюнктивы и цилиарного тела. Достижение желаемой концентрации в области заднего полюса глаза происходит уже в первые часы после введения. Такая фармакодинамика обусловливает высокую терапевтическую эффективность нового малотравматичного метода создания зон повышенной проницаемости в сочетании с курсом ежедневных субконъюнктивальных инъекций лекарственных препаратов для лечения заболеваний заднего сегмента глаза.
Литература:
1. Даниличев В.Ф. «Современная офтальмология». // Санкт–Петербург. «Питер», 2000 г., с. 516–517.
2. Качанов А. Б. Диод–лазерная транссклеральная контактная циклокоагуляция в лечении различных форм глауком и офтальмогипертензий, автореферат диссертации к.м.н. Москва – 1995.
3. Нестеров А.П. « Глаукома». // Москва. «Медицина», 1995 г., с. 112–113.
4. Нестеров А.П., Басинский С.Н. Новый метод введения лекарственных препаратов в задний отдел субтенонового пространства.// Вестник офтальмологии, 1991 г., № 5, с. 49–51.
5. Нестеров А.П., Бровкина А.Ф. Егоров Е.А., Егоров А.Е. Способ введения лекарственных препаратов при заболеваниях заднего отрезка глаза. // Патент на изобретение РФ №2149615.
6. Nesterov A.P., Egorov E.A., Egorov A.E., Katz D.V. Modified technique of contact diode cyclophotocoagulation for far-advanced glaucoma (preliminary study) // 6th Congress of EGS, Millenium meeting, London, 2000