Доклад: Параллельные машины баз данных

Для преодоления недостатков, присущих SE- и SN-архитектурам, А.Бхайд в 1988 г. предложил рассматривать иерархические (гибридные) архитектуры [9], в которых SE-кластеры объединяются в единую SN-систему, как это показано на рис.4. SE-кластер представляет собой фактически самостоятельный мультипроцессор с разделяемой памятью и дисками. Между собой SE-кластеры соединяются с помощью высокоскоростной соединительной сети N. Обозначим такую архитектуру как CE (Clustered-Everything). Она обладает хорошей масштабируемостью, подобно SN-архитектуре, и позволяет достигать приемлемого баланса загрузки, подобно SE-архитектуре.

Рис.4. CE-архитектура. Эта система объединяет несколько SE-кластеров с помощью высокоскоростной соединительной сети. Каждый отдельный кластер фактически представляет собой самостоятельный мультипроцессор с SE-архитектурой.

Основные недостатки CE-архитектуры кроются в потенциальных трудностях с обеспечением готовности данных при отказах аппаратуры на уровне SE-кластера. Для предотвращения потери данных из-за отказов необходимо дублировать одни и те же данные на разных SE-кластерах. Однако поддержка идентичности различных копий одних и тех же данных требует пересылки по соединительной сети значительных объемов информации. А это может существенным образом снизить общую производительность системы в режиме нормального функционирования и привести к тому, что SE-кластеры станут работать с производительностью, как у однопроцессорных конфигураций.

Чтобы избавиться от указанных недостатков, мы предложили [10] альтернативную трехуровневую иерархическую архитектуру (рис.5), в основе которой лежит понятие SD2-кластера. Такой кластер состоит из несимметричных двухпроцессорных модулей PM с разделяемой памятью и набора дисков, объединенных по схеме SD. Обозначим данную архитектуру как CD2 (Clustered-Disk with 2-processor modules).


Рис.5. CD2-архитектура. Система строится как набор SD2-кластеров, объединенных высокоскоростной соединительной сетью в стиле “без совместного использования ресурсов”. Каждый кластер – это система с разделяемыми дисками и двухпроцессорными модулями.

Структура процессорного модуля изображена на рис.6. Процессорный модуль имеет архитектуру с разделяемой памятью и включает в себя вычислительный и коммуникационный процессоры. Их взаимодействие осуществляется через общую оперативную память (RAM). Кроме этого, коммуникационный процессор имеет собственную память; он оснащен высокоскоростными внешними каналами (линками) для соединения с другими процессорными модулями. Его присутствие позволяет в значительной мере освободить вычислительный процессор от нагрузки, связанной с организацией передачи сообщений между процессорными узлами. Подобные процессорные модули выпускаются отечественной промышленностью для комплектования многопроцессорных вычислительных систем МВС-100/1000 [11].

Рис.6. Несимметричный двухпроцессорный модуль с разделяемой памятью. Модуль оснащен двумя процессорами, взаимодействующими через разделяемую память (RAM). Коммуникационный процессор имеет приватную память и оснащен высокоскоростными каналами (линками) для связи с другими модулями.

Такую CD2-архитектуру мы использовали при реализации прототипа параллельной системы управления данными “Омега” для отечественных многопроцессорных комплексов МВС-100/1000. Как показали эксперименты, CD2-система способна достичь общей производительности, сравнимой с производительностью CE-системы, даже при наличии сильных перекосов в распределении данных по дискам. В то же время CD2-архитектура позволяет обеспечить более высокую готовность данных, чем CE-архитектура.

А добиться этого помогли новые алгоритмы размещения данных и балансировки загрузки.

Как устроена система “Омега”

Иерархическая архитектура системы “Омега” предполагает два уровня фрагментации. Каждое отношение разделяется на фрагменты, размещаемые в различных SD2-кластерах (межкластерная фрагментация). В свою очередь каждый такой фрагмент дробится на еще более мелкие части, распределяемые по различным узлам SD2-кластера (внутрикластерная фрагментация). Данный подход делает процесс балансировки загрузки более гибким, поскольку он может выполняться на двух уровнях: локальном, среди процессорных модулей внутри SD2-кластера, и глобальном, среди самих SD2-кластеров.

В системе “Омега” диски, принадлежащие одному кластеру, на логическом уровне делятся на непересекающиеся подмножества физических дисков, каждое из которых образует так называемый виртуальный диск. Количество виртуальных дисков в SD2-кластере постоянно и совпадает с количеством процессорных модулей. В простейшем случае одному виртуальному диску соответствует один физический диск. Таким образом, на логическом уровне SD2-кластер может рассматриваться как система с SN-архитектурой, в то время как физически это система с SD-архитектурой.

В основе алгоритма балансировки загрузки лежит механизм репликации данных, названный внутрикластерным дублированием. Его суть в том, что каждый фрагмент отношения дублируется на всех виртуальных дисках кластера (далее для простоты мы будем опускать термин “виртуальный”).

Схема работы предлагаемого алгоритма балансировки загрузки иллюстрируется на примере кластера с двумя процессорами (рис.7). Здесь процессору P1 сопоставлен диск D1 , а процессору P2 - диск D2 . Предположим, что нам необходимо выполнить некоторую операцию, аргументом которой является отношение R. Мы делим фрагменты, на которые разбито отношение R внутри SD2-кластера, на две примерно равные части. Первая часть назначается для обработки процессору P1 , вторая - процессору P2 (на рис.7 данной стадии соответствует момент времени t0 ).


Рис.7. Алгоритм балансировки загрузки для кластера с двумя процессорными узлами. На дисках D 1 и D 2 расположены две копии отношения R. Процессору P 1 разрешен доступ к копии, хранящейся на диске D 1 , а процессору P 2 – к копии на D 2 . В начальный момент времени t 0 фрагменты отношения R делятся между процессорами P 1 и P 2 примерно в равной пропорции. В момент времени t 1 процессор P 1 закончил обработку своей части отношения R, в то время как процессор P2 успел выполнить только половину назначенной ему работы. В момент времени t 2 происходит перераспределение необработанной части отношения R между двумя процессорами. Перераспределение продолжается до тех пор, пока отношение R не будет обработано полностью (момент времени t 3 ).

В момент времени t1 процессор P1 закончил обработку своей части отношения R, в то время как процессор P2 успел выполнить только часть назначенной ему работы. В этом случае происходит повторное перераспределение необработанной части отношения R между двумя процессорами (момент времени t2 на рис.7). Процесс продолжается до тех пор, пока отношение R не будет полностью обработано (к моменту времени t3 ). Алгоритм очевидным образом обобщается на произвольное число процессоров.

Предложенный алгоритм балансировки загрузки процессоров позволяет избежать перемещения по соединительной сети больших объемов данных. Это в конечном счете и обеспечивает такой системе производительность, сравнимую с производительностью SE-кластеров даже при наличии сильных перекосов данных.

Подведем итоги

Очевидно, что параллельные машины баз данных с одноуровневой архитектурой на сегодняшний день практически уже исчерпали ресурс дальнейшего эффективного масштабирования. На смену им приходят новые системы с иерархической архитектурой, которые могут включать в себя на два порядка больше процессоров и дисков.

Однако при построении иерархических систем по двухуровневому принципу, когда кластеры процессоров с разделяемой памятью и дисками объединяются в единую систему “без совместного использования ресурсов”, возникает проблема обеспечения высокой готовности данных в случае отказов аппаратуры. Действительно, при большом количестве кластеров в системе вероятность отказа одного из кластеров становится достаточно большой, и нам необходимо дублировать одни и те же данные на нескольких различных кластерах, что по существу сводит на нет все преимущества иерархической организации.

Поэтому следует ожидать, что дальнейшее развитие иерархических архитектур параллельных машин баз данных пойдет по пути создания многоуровневых гибридных схем, способных обеспечить высокую готовность данных на конфигурациях с несколькими сотнями тысяч процессорных узлов. В качестве прототипа таких систем предлагается параллельная система баз данных “Омега”, разрабатываемая в Челябинском государственном университете, которая имеет трехуровневую иерархическую архитектуру типа CD2 и может включать в себя сотни SD2-кластеров. Но оптимальную архитектуру SD2-кластера еще предстоит найти. Мы планируем испытать различные конфигурации SD2-кластеров, варьируя топологию межпроцессорных соединений, количество процессорных модулей, количество дисковых подсистем и количество дисков у отдельной дисковой подсистемы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований. Проект 00-07-90077.

Литература

1. Игнатович Н. // СУБД. 1997. №2. C.5-17.

2.Compaq NonStop SQL/MP. http://www.tandem.com/prod_des/nssqlpd/nssqlpd.htm

К-во Просмотров: 211
Бесплатно скачать Доклад: Параллельные машины баз данных