Контрольная работа: Диаграмма состояния системы алюминий-медь

Рис. 2. Структурная диаграмма состояния сплавов Fe Fe 3 C .

В определенных условиях химическое соединение (цементит) может не образоваться, что зависит от содержания кремния, мар­ганца и других элементов, а также от скорости охлаждения слитков или отливок. При этом углерод выделяется в сплавах в свободном состоянии в виде графита. Двух систем сплавов (Fe—Fe3 C и Fe3 C—С) в этом случае не будет. Они заменяются одной системой сплавов Fe—С, не имеющей химических соединений.

2.1 Структурные составляющие железоуглеродистых сплавов.

Микро­скопический анализ показывает, что в железоуглеродистых сплавах образуется шесть структурных составляющих, а именно: феррит, цементит, аустенит и графит, а также перлит и ледебурит.

Ферритом называют твердый раствор внедрения углерода в Fea . Так как растворимость углерода в Fe« незначительна, то феррит можно считать практически чистым Fea . Феррит имеет объемно-центрированную кубическую решетку (Кб). Под микроско­пом эта структурная составляющая имеет вид светлых зерен раз­личной величины. Свойства феррита одинаковы со свойствами железа: он мягок и пластичен, предел прочности 25 кг/мм2 , твердость НВ = 80, относительное удлинение 50%. Пластичность феррита зависит от величины его зерна: чем мельче зерна, тем пластичность его выше. До 768° (точка Кюри) он ферримагнитен, а выше — пара­магнитен.

Цементитом называют карбид железа Fe3 C. Цементит имеет сложную ромбическую решетку. Под микроскопом эта структурная составляющая имеет вид пластинок или зерен раз­личной величины. Цементит тверд В > 800 ед.) и хрупок, а от­носительное удлинение его близко к нулю. Различают цементит, выде­ляющийся при первичной кристаллизации из жидкого сплава (пер­вичный цементит или Ц1 ), и цементит, выделяющийся из твердого раствора Y -аустенита (вторичный цементит или Ц2 ). Кроме того, при распаде твердого раствора а (область GPQ на диаграмме состояния) выделяется цементит, называемый в отличие от предыдущих третичным цементитом или Ц3 . Все формы цементита имеют одинаковое кристаллическое строение и свойства, но различную величину частиц — пластинок или зерен. Наиболее крупными являются частицы первичного цементита, а наиболее мелкими частицы первичного цементита. До 210° (точка Кюри) цементит ферримагнитен, а выше ее — парамагнитен.

Аустенитом называют твердый раствор внедрения углерода в FeY . Аустенит имеет гранецентрированную кубическую решетку (К12). Под микроскопом эта структурная составляющая имеет вид светлых зерен с характерными двойными линиями (двой­никами). Твердость аустенита равна НВ = 220. Аустенит парамаг­нитен.

Графит имеет неплотноупакованную гексагональную решетку со слоистым расположением атомов. Под микроскопом эта структурная составляющая имеет вид пластинок различной формы и величины в серых чугунах, хлопьевидную форму в ковких чугунах, шарообразную форму в высокопрочных чугунах. Механические свойства графита чрезвычайно низки.

Все перечисленные четыре структурные составляющие одновре­менно являются также фазами системы сплавов железа с углеродом, так как они однородны — твердые растворы (феррит и аустенит), химическое соединение (цементит) или элементарное вещество (гра­фит).

Структурные составляющие ледебурит и перлит не однородны. Они представляют собой механические смеси, обладающие особыми свойствами (эвтектику и эвтектоид).

Перлитом называют эвтектоидную смесь феррита и цементита. Он образуется из аустенита при вторичной кристалли­зации и содержит 0,8% С. Температура образования перлита 723°. Эту критическую температуру, наблюдаемую только у стали, назы­вают точкой ??. Перлит может иметь пластинчатое строение, если цементит имеет форму пластинок, или зернистое, когда цементит имеет форму зерен. Механические свойства пластинчатого и зерни­стого перлита несколько отличаются. Пластинчатый перлит имеет предел прочности 82 кг/мм2 , относительное удлинение 15%, твер­дость Нв = 190-^-230. Предел прочности зернистого перлита равен 63 кг/мм2 , относительное удлинение 20% и твердость Я» = = 1.60-г- 190.

Ледебуритом называют эвтектическую смесь аусте­нита и цементита. Он образуется в процессе первичной кристалли­зации при 1130°. Это наиболее низкая температура кристаллизации в системе сплавов железа с углеродом. Аустенит, входящий в состав ледебурита, при 723° превращается в перлит. Поэтому ниже 723° и вплоть до комнатной температуры ледебурит состоит из смеси перлита и цементита. Он очень тверд в ^ 700) и хрупок. Наличие ледебурита является структурным признаком белых чугунов. Механические свойства железоуглеродистых сплавов изме­няются в зависимости от количества структурных составляющих, их формы, величины и расположения.

Структурная диаграмма состояния Fe—Fe3 C является сложной диаграммой, так как в сплавах железо — углерод происходят не только превращения, связанные с кристаллизацией, но и превра­щения в твердом состоянии.

Границей между сталями и белыми чугунами является концентрация углерода 2%, а структурным признаком — наличие или отсут­ствие ледебурита. Сплавы с содержанием углерода менее 2% (у кото­рых ледебурита нет) называют сталями, а с содержанием углерода свыше 2% (в структуре которых есть ледебурит) — белыми чугунами.

В зависимости от концентрации углерода и структуры стали я чугуны принято подразделять на следующие структурные группы: доэвтектоидные стали (до 0,8% С); структура — феррит и перлит; эвтектоидная сталь (0,8% С); структура — перлит;

заэвтектоидные стали (свыше 0,8 до 2% С); структура — перлит в вторичный цементит;

доэвтектические белые чугуны (свыше 2 до 4,3% С); структура — ледебурит (распавшийся), перлит и вторичный цементит;

эвтектический белый чугун (4,3% С); структура—ледебурит;

заэвтектические белые чугуны (свыше 4,3 до 6,67% С); структура— ледебурит (распавшийся) и первичный цементит.

Это подразделение, как видно из диаграммы состояния Fe—Fe3 C, соответствует структурному состоянию этих сплавов, наблюдаемому при комнатной температуре.

Вопрос 3.

Выберите инструментальный твердый сплав для чистового фрезерования поверхности детали из стали 30ХГСА. Дайте характеристику, расшифруйте выбранную марку сплава, опишите особенности структуры и свойства сплава.

Инструменты подразделяются на три группы: режущие (резцы, сверла, фрезы и др.), измерительные (калибры, кольца, плитки и др.), и инструменты для горячей и холодной обработки металлов давлением (штампы, волочильные доски и др.). В зависимости от вида инструментов требования, предъявляемые к сталям для их изготовления, разные.

Основным требованием, предъявляемым к сталям для режущих инструментов, является наличие высокой твердости, не снижающейся при высоких температурах, возникающих в процессе обработки металлов резанием (красностойкости). Твердость для металлорежущих инструментов должна составлять Rc = 60÷65. Кроме того, стали для режущих инструментов должны обладать высокой износоустойчивостью, прочностью и удовлетворительной вязкостью.

Наибольшее применение для изготовления режущих инструментов получили быстрорежущие стали. Быстрорежущая сталь является многокомпонентным сплавом и относится к карбидному (ледебуритному) классу сталей. В ее состав, кроме железа и углерода, входят хром, вольфрам и ванадий. Основным легирующим элементом в быстрорежущей стали является вольфрам. Наибольшее распространение получили (табл. 3) марки быстрорежущей стали Р18 (18 % W) и Р9 (9 % W).

Высокую твердость RC = 62 и красностойкость быстрорежущая сталь приобретает после термической обработки, состоящей из закалки и многократного отпуска.

Таблица 1

Химический состав быстрорежущей стали

К-во Просмотров: 359
Бесплатно скачать Контрольная работа: Диаграмма состояния системы алюминий-медь