Контрольная работа: Электрические машины и трансформаторы

Добавочные полюса располагают между главными полюсами по линии геометрической нейтрала, а их обмотку включают последовательно с обмоткой якоря, чем обеспечивается автоматическое поддержание на требуемом уровне значения магнитной индукции в зоне коммутации при изменениях нагрузки машины. Все машины постоянного тока мощностью свыше 1 кВт снабжаются добавочными полюсами, число которых принимают равным числу главных полюсов или же вдвое меньшим. Добавочные полюса обеспечивают удовлетворительную коммутацию в машине только при нагрузках в пределах номинальной. При перегрузке машины происходит насыщение магнитной цепи этих полюсов и коммутация ухудшается.

Однако добавочные полюсы не устраняют полностью нежелательного воздействия реакции якоря на распределение магнитной индукции в зазоре машины постоянного тока. Поэтому в мощных быстроходных машинах постоянного тока, работающих в режиме интенсивных нагрузок, применяют компенсационную обмотку. Эту обмотку включают последовательно в цепь якоря и располагают в полюсных наконечниках главных полюсов машины (рис. 13.9). Компенсационная обмотка создает МДС по поперечной оси встречно магнитному потоку якоря и компенсирует его.

4. Смещение щеток с геометрической нейтрали. В машинах мощностью до 1 кВт без добавочных полюсов улучшение коммутации достигается смещением щеток с геометрической нейтрали в направлении вращения якоря у генераторов или встречно направлению вращения якоря у двигателей. Этот способ улучшения коммутации применим лишь в нереверсируемых электрических машинах, работающих с неизменной нагрузкой.

Искрение на коллекторе является интенсивным источником электромагнитных колебаний частотой от 1000 до 3000 Гц. Эти колебания распространяются по сети и вызывают помехи в радиоприемных устройствах. Для устранения помех применяют подавляющие электрические фильтры из проходных конденсаторов типа КБП емкостью от 0,1 до 1,0 мкФ (рис. 13.10). У этих конденсаторов одним из зажимов является металлическая оболочка, прикрепляемая к заземленному корпусу машины.

Вопрос № 3 Устройство и принцип действия автотрансформатора.

Его достоинства и недостатки

Основное конструктивное отличие автотрансформатора от трансформатора состоит в том, что в автотрансформаторе часть обмотки ВН является обмоткой НН. В связи с этим энергия из первичнойцепи во вторичную передается не только за счет магнитной связи между этими цепями, но и за счет непосредственной электрической связи этих цепей. Рассмотрим работу однофазного понижающего автотрансформатора (рис. 3.2, а).

Участок обмотки аХ—общий для первичной и вторичной цепей. Пренебрегая током х. х., запишем уравнение МДС:

I1 wAX + waX I2=0.

Разделив это уравнение на число витков обмотки wAX , получим уравнение токов автотрансформатора:

I1 + I2 (waX / wAX )=0, илиI1 = - I2 / kA , (3.5)

где kA = wAX /waX — коэффициент трансформации автотрансформатора.-

По общей части витков аХ обмотки автотрансформатора проходит ток I12, равный алгебраической сумме токов, т. е.

I12 = I1 + I2 . (3.6)

В понижающем автотрансформаторе вторичный ток больше первичного, т. е. I2>I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

I12 =I2 -I1. (3.7)

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I2 =I1+I12 . Подставив это выражение в формулу проходной мощности, получим

Snp =U2I2=U2 (I1 +I12 )=U2 I1 +U2 I12 =Sэ + Sрасч . " (3.8)

Здесь S э U 2 I 1 — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрас = U2 I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность SЭ , а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ , передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1 = U2I2/kA = Sпр /kA , (3.9)

т. е. величина мощности Sэ обратно пропорциональна коэффициенту трансформации автотрансформатора kA .

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA =\ вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (Sэ /Sпр=1).


Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X(см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

3. При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

К-во Просмотров: 329
Бесплатно скачать Контрольная работа: Электрические машины и трансформаторы