Контрольная работа: Электрохимические технологии в медицине

2. ЭЛЕКТРОХИМИЧЕСКОЕ ОКИСЛЕНИЕ В МОДЕЛИРОВАНИИ ФУНКЦИИ МОНООКСИГЕНАЗ ПЕЧЕНИ

С точки зрения электрохимии возможны три подхода в моделировании функций монооксигеназ печени.

Первое направление — это катодное гидромксилирование за счет двухэлектронного восстановления кислорода, растворенного в крови, на подходящем катоде с поставкой электронов от внешнего источника тока по общему уравнению:

О2 + 2H+ + 2e + RH → ROH + H2 O. (1)

При этом механизм протекающих процессов может быть очень сложен. Электрод может выступать как замена окислительно-восстановительной ферментной цепи, поставляющей на фермент Р-450 электроны, необходимые для активации молекулярного кислорода, или обеспечить дополнительную электрохимическую активацию молекулярного кислорода, ускоряя работу микросомальной гидроксилирующей системы. На электродах из различных углеродистых материалов, золота и некоторых других в результате двухэлектронного восстановления кислорода будет образовываться перекись водорода, которая может принимать участие в различных реакциях окисления токсинов, катализируемых ферментами в крови.

Второе направление — это прямое анодное окислительное гидроксилирование различных токсинов по общей реакции:

RH + 2OH → 2e → ROH + H2 O. (2)

Путем увеличения анодного потенциала и правильного подбора материала электрода катализатора можно добиться окисления практически любого органического соединения. Поэтому на сегодняшний день это направление является наиболее перспективным в моделировании функции монооксигеназ печени и полностью независимым от работы ферментативных систем.

Третье направление — это электрокаталитическое гидроксилирование в короткозамкнутом топливном элементе, на катоде-катализаторе которого происходит восстановление растворенного в крови кислорода, а на аноде-катализаторе окисление (гидроксилирование) по реакции (2). Так как между катодом и анодом происходит обмен электронами, суммарная реакция, протекающая в таком топливномливном элементе, следующая:

2 RH + O2 → 2 ROH

В принципе, это наиболее идеальная система в моделировании функции монооксигеназ печени, так как она не требует притока электронов извне (т. е. не требует внешнего источника тока) и является саморегулирующейся системой. Однако большинство ксенобиотиков и токсинов даже на наиболее активных платиновых электродах-катализаторах окисляется с трудом, при достаточно положительных потенциалах. В тоже время на на менее активных из известных в настоящее время кислородных электродах энергетические потери составляют 0,2—0,3 В. Таким образом современное состояние электрокатализа не может обеспечить на известных катализаторах окисление с достаточной скоростью всех токсинов в таких короткозамкнутых топливных элементах. Поэтому основное внимание было сосредоточено на моделировании монооксигеназ печени прямым электрохимическим окислением.


ЗАКЛЮЧЕНИЕ

Проведенные исследования показали возможности электрохимического окисления в моделировании функции монооксигеназ печени, а также в создании электрохимической модели монооксигеназной системы печени. Изучение электрохимического окисления различных токсинов эндогенного происхождения и ксенобиотиков как на стендах, так и на животных показало, что продукты электроокисления идентичны тем, которые образуются при окислении токсинов в печени. Возможность создания искусственных систем, способных осуществлять гидроксилазные реакции, протекающие в эндоплазматическом ретикулуме клеток печени, лимитируется не собственно возможностями электрохимического окисления токсинов, а проблемой белковой защиты, т. е. связыванием токсина альбумином в организме и проблемой совместимости электрохимической ячейки с кровью. Поэтому все предложенные ранее системы оказались неработоспособными в крови и других биологических жидкостях. Подробное изучение электрохимического окисления различных токсинов прямо в крови, и других физиологических жидкостях, исследования совместимости электрохимической ячейки с кровью позволили создать искусственную детоксицирующую систему клинического назначения.

Так как создание электрохимической модели монооксигеназной системы печени столкнулось с серьезной проблемой совместимости электрохимической ячейки с кровью, был предложен метод непрямого электрохимического окисления крови с использованием переносчиков активного кислорода, когда кровь не вступает в контакт с электрохимической системой, т. е. электролизу подвергается раствор переносчика кислорода, который затем вводится пациенту.

В качестве наиболее удобного и физиологического переносчика кислорода использован изотонический раствор хлористого натрия, в котором при электролизе на подходящих анодах происходит накопление активного кислорода в виде гипохлорита натрия. Показано, что среди реакций окисления гипохлоритом имеются почти все типы реакций катализируемых моноок-сигеназами. Окисление ряда ксенобиотиков и эндотоксинов гипохлоритом приводит к образованию конечных продуктов, аналогичных получаемым с участием цитохрома Р-450. Гипохлорит натрия позволяет обойти эффект белковой защиты токсичных метаболитов и моделирует не только функции монооксигеназ печени, но и молекулярные механизмы фагоцитоза.

Исследования в модельных растворах, в плазме крови и в экспериментах на животных позволили перейти к клиническому использованию непрямого электрохимического окисления.


Список использованной литературы:

1. Арчаков А. И, Микросомальное окисление.— М.: Наука, 2005.— 327 с.

2. Жирнов Г. Ф. Изотов М. В., Корузина И. И. и др. // Вопросы мед. химии,— 2008,— № 2,— С, 218—222.

3. Комаров Б. Д., Лужников Е. А., Шиманко И. И. Хирургические методы лечения острых отравлении.— М.: Медицина, 2001.— 270 с.

4. Корыта И. Ионы, электроды, мембраны,— М.: Химия , 1983.— 263 с.

5. Лопаткин Н.А., Лопухин Ю.М. Эфферентные методы в медицине. – М.: Медицина, 2006. – 234с.

6. Лопухин Ю.М., Молоденков М.Н. Гемосорбция.–М.: Медицина, 2008.–301с.

7. Лопухин Ю. М., Молоденков М. И. Гемосорбция.— 2-е изд. перераб. И доп.— М.: Медицина, 2005.— 288 с.

8. Лопухин Ю, М., Арчаков А. И., Владимиров Ю. А., Коган Э. М. Холе-
стериноз,— М.: Медицина, 2003,— 352 с.

9. Метелица Д. И. Активация кислорода ферментными системами.— М.: Наука, 2002.— 254 с.

10. Полукаров Ю.М. Электрохимия и медицина. Итоги науки и техники М.: - 2000. – 251 с.

11. Томилов А. П., Майрановский С. Г., Фиочшн М.Б., Смирнов В. А. Электрохимия органических соединении.— Л.: Химия, 2008.— 590 с.

12. Эпплби А. Дж. Электрохимия. Прошедшие тридцать и будущие тридцать лет. / Ред. Блума Г., Гутман Ф. – М.: Химия, 2002. – с. 349-351.

К-во Просмотров: 208
Бесплатно скачать Контрольная работа: Электрохимические технологии в медицине