Контрольная работа: Электротехнические и конструкционные материалы
2. 0кисные кристаллические полупроводниковые материалы, то есть материалы из окислов металлов.
3. Кристаллические полупроводниковые материалы на основе соединений атомов третей и пятой групп системы элементов таблицы Менделеева.
4. Кристаллические полупроводниковые материалы на основе соединений серы, селена, меди, свинца - они называются сульфидами, селенидами.
КАРБИД КРЕМНИЯ относится к первою группе полупроводниковых материалов и является наиболее распространенным монокристаллическим материалом. Этот полупроводниковый материал представляет собой смесь множества малых кристалликов, беспорядочно спаянных друг с другом. Карбид кремния образуется при высокой температуре при соединении графита и кремния. Его используют в фотоэлементах диодах, триодах и др. Земная кора содержит 50% кремнезема SiO2, который служит основным сырьем для получения карбида кремния.
ВОПРОС №4. Физико-химические и механические свойства диэлектриков.
ОТВЕТ: Для оценки свойств электротехнических материалов кроме электрических характеристик необходимо знать также и механические и физико-химические свойства. С помощью механических свойств оценивают материалы на прочность при растяжении “сжатии, изгибе, ударе. К основным механическим свойствам относятся: предел прочности материала при сжатии ( δс ) при растяжении ( δр ) предел прочности при статическом изгибе (δu ) и удельная ударная вязкость (δu) материала.
Рассмотрим способы измерения механических свойств у электроизоляционных материалов: Предел прочности при растяжении определяют с помощью специальных образцов, при которых обеспечивается равномерное распределение усилий по площади сечения образца, его закрепляют и растягивают до тех пор, пока не порвется.
Предел прочности вычисляют по формуле:
Рр - разрушающее усилие
S0 - площадь поперечного сечения до испытания. Предел прочности при сжатии определяется на образцах имеющих форму куба или цилиндра. Цилиндр ставят под пресс, одна из плит которого должна быть самоустанавливающейся во избежании неодинаковой нагрузки и повышают сжимающуюся нагрузку с определенной скоростью до того пока цилиндр не рассыплется.
Предел прочности при сжатии определяется по формуле:
где: РС - разрушающее усилие при сжатии образца материала;
S0 - площадь поперечного сечения образца материала до испытания.
Следующим свойством является предел прочности при статистическом изгибе (δU ). Определяется на образцах представляющих собой бруски, образец помещают в испытательную машину, где он свободно опирается концами на две стальные опоры. Изгибающиеся усилия прикладываются к середине образца и плавно увеличиваются с таким расчетом, чтобы напряжение в сечении бруска возрастало со скоростью 100 - 150 кг/см2 в минуту до тех пор, пока не разрушится образец или не потечет. Предел прочности при статистическом изгибе определяется по формуле:
где: РU - изгибающее усилие,
L - расстояние между стальными опорами в испытательной машине,
b - ширина образца,h - толщина образца.И последнее свойство, которое мы рассмотрим - это удельная ударная вязкость позволяющая определить и оценить сопротивление материала к ударному изгибу. Чем меньше величина удельное ударной вязкости, тем более хрупок данный материал. Испытание на хрупкость провозят с помощью испытательного прибора – копра, где образец материала (брусок) свободно опирается на две стальные опоры копра. Расстояние между опорами равно 70мм, копер снабжен тяжелым стальным маятником с бойком. Последний имеет форму клина с углом 15º при вершине. Боек закруглен по радиусу 3мм. Маятник может вращаться вокруг стальной оси. Его центр тяжести совпадает с серединой бойка. Стальной маятник освобождают, и он при падении ударом бойка разрушает образец материала, при ударном изгибе затратив при этом часть своей энергии, маятник взлетает на некоторую высоту. При этом энергия, затраченная на разрушение образца материала равна произведению силы на разность высот. Удельную ударную вязкость вычисляют как отношение работы затраченной при разрушении образца к площади его первоначального поперечного сечения.Находят по формуле:
Мы рассмотрели основные механические свойства изоляционных материалов, но диэлектрики обладают также и физико-химическими свойствами, о которых пойдет речь далее.
Изоляционные материалы имеют физико-химические свойства, из которых основными являются кислотное число, вязкость, кинематическая вязкость, водопоглощаемость, химическая стойкость, тропическая стойкость и радиационная стойкость. Итак, кислотное число это количество миллиграммов едкого калия (KOH) которое необходимо для нейтрализации свободных кислот содержащихся в 1 грамме жидкого диэлектрика. Кислотное число определяется у электроизоляционных жидкостей, а также у лаков, эмалей, компаундов.
Чем выше кислотное число, тем больше свободных кислот в жидком диэлектрике, а значит тем выше его проводимость, так как кислоты под действием электрического напряжения легко распадаются на ноны. Кроме того кислоты могут разрушать изоляционные материалы, например - бумагу и другие, с которыми соприкасается жидкий диэлектрик.
В ГОСТе для кислоты строго установлены допустимые пределы, например для трансформаторного масла 0,05 мг КОН на 1гр масла. Вязкость представляет собой коэффициент внутреннего трения при относительном перемещении частиц жидкости.
Вязкость определяет пропитывающую способность жидких диэлектриков. Чем меньше вязкость, тем глубже проникают частицы лаков и компаундов в поры волокнистой изоляции обмоток и наоборот.
В технике используются кинематической иуловной вязкостью.
Кинематическая вязкость измеряется в стоксах. Сотая доля стокса называется санистокс. Для определения кинематической вязкости используют прибор капиллярный вискозиметр, изготовленный из стекла. Искомую кинематическую вязкость вычисляют по формуле:
С - постоянная вискозиметраτ - время истечения испытуемой жидкости.
Водопоглащаемость позволяет оценить способность диэлектрика противостоять воздействию воды, которая, проникая в поры материала, вызывает снижение его электрических, характеристик. Для оценки образцы диэлектриков сушат 24 часа, потом взвешивают, после чего опускают на 24 часа в воду, потом опять взвешивают. Водопоглащение находят по следующей формуле:
Водопоглащаемость позволяет определить степень устойчивости диэлектрика к воздействию на него паров воды - при работе электроизоляционного материала во влажной атмосфере. Влагопоглащаемость вычисляют по формуле:
Химическая стойкость позволяет оценить степень стойкости диэлектриков при воздействии на них растворителей, окислителей и других разрушающих агентов (кислоты, щелочи их растворы и пары). Для определения стойкости диэлектрика подробно исследуют изменения механических и электрических характеристик, его образцов, находившихся долгое время под воздействием тех или иных реагентов.
Резкое падение прочности свидетельствует о низкой стойкости диэлектрика к этому растворителю.