Контрольная работа: Каналы связи и интерфейсы

радиоканалы, в основном в УКВ диапазоне с частотной модуляцией, к которым примыкают и мобильные телефонные каналы;

оптоволоконные каналы.

Радиоканалы и оптоволоконные каналы используются в пространственно распределенных ИИС. Оптоволоконные каналы более помехоустойчивы и имеют меньшую стоимость. Однако радиоканалы удобнее для связи с перемещающимися объектами. Эти два вида каналов используются и в телеизмерительных системах, которые по определению являются пространственно распределенными.

В рамках одной ИИС могут использоваться различные каналы; например, активные ПИП, не формирующие никакого выходного сигнала, могут быть связаны с ВИП только проводами. В этой системе для связи АЦП как с вторичными преобразователями, так и с ЭВМ могут использоваться каналы других видов.

В зависимости от того, какой параметр несущего сигнала используется для передачи информации, различают следующие виды систем передачи:

системы интенсивности, в которых несущим параметром является значение тока или напряжения;

частотные (частотно-импульсные), в которых передаваемая величина меняет частоту синусоидального сигнала или частоту следования импульсов;

канал связь интерфейс информация

времяимпульсные, в которых несущим параметром является длительность импульсов; к ним же относятся фазовые системы, в которых передаваемая величина меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;

кодовые (кодоимпульсные), в которых передаваемая величина передается какими-либо кодовыми комбинациями.

Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для передачи информации по проводным каналам. Эти системы, передающие аналоговые сигналы, имеют сравнительно низкую помехоустойчивость, что приводит к дополнительным погрешностям передаваемой информации. Такие системы наиболее часто используются для связи первичных и вторичных преобразователей и для связи последних с АЦП. При этом приходится применять обычные методы повышения помехоустойчивости: использование витых пар и экранированных проводов, постановка блокировочных конденсаторов, развязка земли и нулевого провода и т.д.

Частотные, времяимпульсные и кодовые системы передачи имеют существенно большую помехоустойчивость и практически не вносят погрешности в передаваемую информацию.

При согласовании информационных потоков и пропускной способности каналов широко используются методы теории информации [29], которая появилась именно в связи с потребностями теории связи. При этом следует с осторожностью применять теоретико-информационные понятия в тех сферах, для которых они не предназначены, например при оценке неопределенности результатов измерения.

Как видно из сказанного, ИИС в настоящее время проектируются на основе агрегатного (модульного) принципа, в соответствии с которым устройства, входящие в систему, представляют собой отдельные самостоятельные изделия (приборы, блоки). Для обозначения унифицированных систем сопряжения устройств, участвующих в обмене информации, используется термин интерфейс. Под интерфейсом (или сопряжением) понимают совокупность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов системы. Понятие интерфейса в принципе применимо и к системам интенсивности. Однако в этом простейшем случае оно включает в себя лишь требования к уровням сигналов и входным и выходным импедансам устройств приема-передачи. Основное же применение это понятие находит при организации передачи информации в кодовых системах. В этом случае различают два понятия: интерфейсные системы и интерфейсные устройства.

Под интерфейсной системой понимают совокупность логических устройств, объединенных унифицированным набором связей и предназначенных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаимодействия функциональных модулей в соответствии с установленными нормами и правилами.

Интерфейсные устройства подсоединяются к шине системы сопряжения и объединяются по определенным правилам, относящимся к физической реализации сопряжения. Конструктивное исполнение этих устройств, характеристики вырабатываемых и принимаемых блоками сигналов и согласование их последовательности во времени позволяют упорядочить обмен информацией между отдельными блоками.

Используются два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:

жесткая унификация и стандартизация входных и выходных параметров элементов системы;

использование функциональных блоков с адаптивными характеристиками по входам-выходам.

Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления.

Между блоками ИИС осуществляется обмен информационными и управляющими сообщениями. Информационное сообщение содержит сведения о значении измеряемой величины, диапазоне измерения, времени измерения, результатах контроля состояния ИК и др. Управляющее сообщение содержит сведения о режиме работы блоков, о последовательности выполнения ими операций и др.

Наиболее распространенные интерфейсы определены международными, государственными [11] и отраслевыми стандартами.

Существует четыре основных признака классификации интерфейсов:

способ соединения элементов системы (магистральный, радиальный, цепочечный, комбинированный);

способ передачи информации (параллельный, последовательный, параллельно-последовательный);

принцип обмена информацией (асинхронный, синхронный);

режим передачи информации (двусторонняя одновременная передача, двусторонняя поочередная передача, односторонняя передача).

В цепочечной структуре каждая пара источник-приемник соединена попарно линиями от выходов предыдущих блоков к входам последующих, и обмен данными происходит непосредственно между блоками. Функции управления распределены между соседними устройствами. Цепочечную структуру интерфейсов используют, как правило, в несложных системах с несколькими функциональными устройствами. Если ИК не имеют общих аппаратных элементов, то соединение элементов каждого канала целесообразно организовывать по цепочечной структуре.

В системе, выполненной по радиальной структуре, имеется центральное устройство - контроллер, с которым каждая пара источник-приемник связана с помощью индивидуальной группы шин. Блоки и приборы, подключаемые к контроллеру, могут изменять свои места при соответствующем изменении программы работы контроллера. Под управлением контроллера происходит обмен данными между каждым устройством и контроллером. Связь между управляющим устройством и одним из устройств-источников (приемников) сигналов может осуществляться как по инициативе контроллера, так и по инициативе устройств (абонентов). В последнем случае одно из устройств вырабатывает сигнал запроса на обслуживание, а контроллер идентифицирует запрашиваемое устройство. Когда контроллер готов к обмену данными, логически подключаются цепи связи и начинается процесс обмена. Эти цепи остаются подключенными, пока не будет передана нужная порция информации. Контроллер может производить обмен данными только с одним из устройств. В случае одновременного поступления запросов от двух и более абонентов по системе приоритетов будет установлена связь с устройством, имеющим наивысший приоритет. Приоритет присваивается приборам и блокам в зависимости от их типа, технических характеристик и важности поступающей информации. В интерфейсах с радиальной структурой приоритет чаще всего определяется местом подключения кабеля, соединяющего абонента с контроллером. Радиальное соединение функциональных блоков обеспечивает достаточно простую и быструю адресацию и идентификацию требуемого устройства.

К-во Просмотров: 404
Бесплатно скачать Контрольная работа: Каналы связи и интерфейсы