Контрольная работа: Холодильное оборудование торговых предприятий

Существует несколько основных способов хранения плодоовощной продукции в свежем виде. Это хранение плодов в неохлаждаемом хранилище, в холодильниках с обычной атмосферой (ОА), в регулируемой газовой среде (РГС). Хранение плодов в неохлаждаемом хранилище является наиболее доступным способом, однако, процент брака здесь наиболее высок: плоды сохраняются значительно меньший срок по сравнению с хранением в обычных холодильниках или в холодильниках с РГС. Хранение плодов в обычной холодильной камере имеет ряд значительных преимуществ, в основном благодаря возможности более быстрого охлаждения продукции в камере, что замедляет развитие различных физиологических заболеваний плодов. Хотя строительство холодильника - "удовольствие" довольно дорогое, и его содержание обходится дорого, затраты возвращаются очень быстро. Цены на яблоки или груши после 3-4 месяцев хранения возрастают примерно в 2 раза в сравнении с ценами после сбора.

Еще более эффективным способом сохранить твёрдость, сочность, свежесть, хрустящую консистенцию, вкус плодов является хранение в регулируемой газовой среде, которую создают:

В полимерных пленках

В полиэтиленовых пакетах с диффузионными вставками

В холодильных камерах

Простейшей разновидностью газового хранения плодов является использование синтетических полимерных пленок (полиэтилена и др.), селективно проницаемых для газов. В пакетах из полиэтилена, в которые помещают плоды, естественным путем создается определенная газовая среда, увеличивается концентрация СО2 и снижается содержание кислорода благодаря дыханию самих плодов. Через пленку происходит диффузия газов: СО2 диффундирует в окружающую среду со скоростью, величина которой определяется разницей между концентрациями СО2 внутри и снаружи пленочной упаковки, а также газопроницаемостью пленки и величиной площади поверхности упаковки. Диффузия кислорода внутрь пакета возрастает по мере потребления его плодами в процессе дыхания. Обычно проницаемость пленок для СО2 в 2-5 раз выше, чем для кислорода. Благодаря этому для СО2 раньше достигается равновесная концентрация, чем для кислорода. Степень испарения влаги можно регулировать перфорацией пленки, причем количество и размеры ячеек (отверстий в пленке) обусловливаются видом плодов и овощей и условиями хранения в розничной торговле.

Контейнеры из полиэтилена толщиной 150-180 мкм и емкостью от 0,3 до 1 тонны плодов представляют собой большие мешки, в одной из стенок которых вставлена силиконовая (диффузионная) пленка заданного размера. Силиконовая пленка пропускает СО2 в 5-6 раз быстрее, чем кислород, благодаря чему в контейнерах возникает желаемый газовый режим. Яблоки в таких контейнерах сохраняются на 5-6 недель дольше, чем при обычном хранении в холодильниках. Недостатком этого способа является образование конденсата на внутренней поверхности пленки, если не до конца удалить теплоту дыхания. В холодильниках с РГС можно контролировать процентный состав кислорода, углекислого газа. После заполнения камеры продукцией постепенно изменяется состав атмосферы в камере: снижается процент кислорода и повышается содержание углекислого газа. В нормальной атмосфере наличие углекислого газа доходит до 0,03%, кислорода — до 21%. В камере, заполненной плодами, количество углекислого газа достигает нескольких процентов. Его количество должно быть контролируемым, поскольку высокая концентрация СО2 может повредить продукции. При излишке углекислого газа часть его удаляют химическим способом с помощью извести или активированного угля. Если процент СО2 упал ниже допустимого уровня, в камеру впускают немного свежего воздуха. В холодильнике с РГС дополнительно нужно контролировать процентный состав атмосферы. Развитие техники для хранения плодов сделало контроль и регулирования всех процессов, которые происходят в камерах, автоматическим. Как вспомогательное средство также применяют обработку плодов и овощей озоном. Озон обладает мощным бактерицидным действием, способен эффективно разрушать различные виды плесневых грибов и дрожжей. Одновременное обеззараживание, детоксикация и дезинсекция способствуют длительному сохранению плодоовощной продукции. При этом практически полностью сохраняются органолептические и физико-химические свойства, исключается интоксикация остаточными химическими веществами. Овощи и фрукты имеют отличную потребительскую привлекательность, высокую сохранность питательных и вкусовых качеств.

Новое слово в технологиях хранения плодов и овощей - использование химических регуляторов роста, применяемых в качестве средств управления биологическими процессами на гормональном уровне. Наиболее важный из этих гормонов, отвечающий за созревание, - этилен. Участие этилена в регуляции роста растений было открыто Д.Н. Нелюбовым в Петербургском государственном университете в 1901 году. Известно много препаратов, применяемых для снижения эффектов действия этилена. В сельском хозяйстве многих стран мира используют препараты на основе таких химических соединений, как диазоциклопентадиен (DACP), тиосульфат серебра (STS), аминоэтоксивинилглицин (AVG), 2,5-норборадиен (NBD), аминооксиуксусная кислота (AOA), а так же препараты на основе двуокиси углерода. Однако эти препараты обладают рядом существенных недостатков: одни обладают обратимым действием или ингибируют синтез лишь эндогенного этилена, не оказывая влияния на экзогенный, другие показывают высокое остаточное содержание в плодах после обработки, третьи дороги в утилизации или имеют неприятный запах. Исследования по синтезу замещенных циклопропенов впервые проводились еще в 20-х годах прошлого века в Советском Союзе, но влияние их на биосинтез этилена было открыто только в 90-х.

Отечественное ноу-хау, препарат «Фитомаг», на основе 1-метилциклопропена является уникальной совместной разработкой Всероссийского научно-исследовательского института садоводства им. Мичурина и Российского химико-технологического университета им. Менделеева. Эффективный в ингибировании эндогенного и экзогенного этилена в климактерических овощах и фруктах (яблоки, груши, слива, алыча, абрикос, персик, нектарины, бананы, хурма, кабачки, капуста, томаты, огурцы, арбузы, дыни, зеленые культуры и многие др.), препарат абсолютно безопасен для человека и животных.

Для обработки плодоовощной продукции с целью увеличения сроков хранения достаточно выполнения следующих условий: Обрабатываемые овощи или фрукты должны находиться в замкнутом, герметичном пространстве. Это может быть холодильная камера как с обычной, так и с регулируемой атмосферой, специально оснащенный контейнер для морских перевозок или перевозок автомобильным и железнодорожным транспортом, рукав из особой барьерной пленки.

Закладываемые плоды должны быть сняты в стадии съемной зрелости в садах с высоким урожаем и качеством продукции. Не рекомендуется использовать партии плодов, снятые с малоурожайных, сильнорастущих молодых насаждений (первого года плодоношения); с деревьев с сильно загущенной кроной и имеющих небольшое количество семян. Съем плодов должен производится в оптимальные сроки, определяемые по комплексу показателей, основные из которых: индекс йод-крахмальной пробы, внутреннее содержание этилена, твердость. Для обработки используются партии плодов на срезе которых сердцевина не окрашивается, а степень окраски остальных тканей составляет 60-70%. Содержание эндогенного этилена в среднем должно составлять 0,1-1,0 ppm (частей на миллион). Однако не всегда удобно герметизировать грузовой контейнер. В этом случае используют полимерные барьерные пленки с модифицированной атмосферой внутри (МА), в которые заключают требуемое количество плодов, например ящиков с бананами. Включение в газовую среду 1-метилциклопропена также исключает возникновение и развитие многих физиологических заболеваний. Наиболее широкое применение в нашей стране данная технология находит в садоводстве при обработке яблок.


2. Сублимационная сушка

Сублимация (позднелатинское sublimatio — возвышение, вознесение, от латинского sublimo — высоко поднимаю, возношу), возгонка, переход вещества из кристаллического состояния непосредственно (без плавления) в газообразное; происходит с поглощением теплоты. Сублимация — одна из разновидностей, возможна во всём интервале температур и давлений, при которых твёрдая и газообразная фазы сосуществуют. Необходимая для сушки энергия называется теплотой. Зависимость между теплотой сушки, давлением насыщенных паров над твёрдым телом и температурой в условиях равновесного перехода выражается уравнением Клапейрона - Клаузиуса. Сушка металлических кристаллов приводит к образованию одноатомных паров; ионные кристаллы, испаряясь, часто образуют в газовой фазе полярные молекулы; молекулярные кристаллы образуют пары, состоящие из молекул. Основной кинетической характеристикой сушки является скорость сушки — масса вещества, сублимирующего в единицу времени. Зависимость предельной скорости сушки веществ от температуры и свойств газообразной фазы определяет их выбор для теплозащиты космических аппаратов. Сушка широко применяется также для очистки твёрдых веществ (возгонка с последующим выращиванием чистых кристаллов в газовой среде). То есть, сублимационная сушка продуктов (сублимационная вакуумная сушка, также известная как лиофилизация или возгонка) - это удаление влаги из свежезамороженных продуктов в условиях вакуума.

В настоящее время этот метод сушки продуктов является наиболее совершенным, но в то же время и наиболее дорогостоящим. Этот способ был открыт в начале прошлого века, однако использовался только для производства довольно ограниченного количества и ассортимента сухопродуктов для нужд армии и космонавтики. Принцип сублимационной сушки основан на том физическом факте, что при значениях атмосферного давления ниже определенного порога - т.н. "тройной точки" (для чистой воды: 6,1 мбар при 0 градусов Цельсия) вода может находиться только в двух агрегатных состояниях - твердом и газообразном, переход воды в жидкое состояние в таких условиях невозможен. И если парциальное давление водного пара в окружающей среде ниже чем парциальное давление льда, то лед продукции прямо переводится в газообразное состояние, минуя жидкую фазу.

Процесс сублимационной сушки продуктов физически состоит из двух основных этапов (замораживание и сушка продукта) и этапа досушивания. Первый этап это замораживание продукта при температуре ниже его точки затвердевания. Второй этап - сублимирование, удаление льда или кристаллов растворителя при очень низкой температуре, то есть непосредственно сушка продукта. При этом значительное влияние на качество сухопродукта и на время, требующееся для сушки, имеет этап заморозки. Чем быстрее и глубже замораживается продукт, тем менее крупные кристаллы льда образуются в продукте, тем быстрее они испаряются на втором этапе сушки продукта и тем выше качество получаемого продукта. Так как удаление основной массы влаги из объектов сушки происходит при отрицательных температурах (-20...-30 градусов Цельсия), а их досушивание осуществляется также при щадящем (не выше +40 градусов) температурном режиме, то в результате достигается высокая степень сохранности всех наиболее биологически ценных компонентов исходного сырья.

Наибольшее применение сублимационная вакуумная сушка получила в технологиях производства лекарственных препаратов, ферментов, заквасок, экстрактов лекарственных трав и других объектов, которым требуется обеспечить сохранность в сухопродукте всех полезных составляющих сырья в течение длительных периодов времени. Сублимационная сушка продукта является одним из самых современных методов обратимого консервирования микроорганизмов и биопрепаратов, который обеспечивает наилучшее качество сухопродукта и высокую восстанавливаемость лактобактерий при минимальной продолжительности процесса и, соответственно, минимальных затратах.

Поскольку конечная влажность сублимационно-вакуумных материалов является очень низкой (порядка 2-5%), то это создает все предпосылки для их длительного хранения в условиях нерегулируемых температур. Консервирование сублимационной сушкой в перечисленных выше отраслях является прогрессивной технологией, а в ряде случаев - не имеющей альтернативы.

В производстве продуктов питания сублимацонно-вакуумная сушка используется в качестве средства консервации путем замораживания свежих продуктов и удаления из них жидкости, что позволяет практически полностью, до 95%, сохранить в них питательные вещества, микроэлементы, витамины и даже первоначальную форму, естественный вкус, цвет и запах продолжительное время (от двух до пяти лет) при изменяющейся температуре окружающей среды (от -50 до +50 градусов Цельсия). Сублимационно-вакуумная сушка продуктов питания делает ненужным применение каких бы то ни было ароматизаторов, консервантов и красителей. Одним из важнейших достоинств вакуумной сушки продуктов является малая усадка исходного продукта, что дает возможность избегать их разрушения и быстро восстанавливать сублимированные сухопродукты, имеющие после сушки пористую структуру, путем добавления воды.

Способом сублимационной сушки консервируются фрукты, овощи, молочные изделия, мясо, рыба, каши и супы, грибы, приправы. Продукты сублимационно-вакуумной сушки имеют очень широкие возможности для использования как в качестве готовых продуктов быстрого приготовления, так и в качестве полуфабрикатов для дальнейшей промышленной переработки (кондитерская, пищеконцентратная, мясо-молочная, парфюмерная и другие отрасли).

Высокое качество и биологическая полноценность готовых сублимированных продуктов объясняется тем, что обработке может подвергаться только свежее сырье. Несвежие продукты сублимационную сушку не выдерживают. Консервирование методом сублимационной сушки не требует добавления каких-либо химических и иных ароматизаторов, консервантов и стабилизаторов и т.п., что является еще одним преимуществом. Данный факт примечателен тем, что прошедшие сублимационную сушку продукты абсолютно пригодны для детского и диетического питания. Вес сублимированных сухопродуктов в среднем принимается от 1/5 до 1/10 начальной массы. Столь малый вес сублимированных сухопродуктов исключительно важен для существенного сокращения расходов при их транспортировке. Как правило, упаковываются сублимированные сухопродукты в трехслойные металлизированные пакеты с азотным наполнением весом от 2г до 5000г, в зависимости от продукта.

Ранее в пищевой промышленности сублимационно-вакуумную сушку использовали в основном для выполнения заказов военной, оборонной и космической отраслей, теперь она оказалась востребованной для приготовления продуктов премиум класса.

Сушка сублимацией заключается в удалении влаги из замороженного материала путем возгонки льда. Этот способ сушки довольно широко применяется в таких отраслях промышленности, как пищевая, мясо-молочная, фармацевтическая, когда надо высушить продукт, сохранив его природные свойства: внешний вид, размеры, запах, растворимость и т. п. Сушка сублимацией может быть осуществлена при атмосферном и пониженном давлении. Раньше в кожевенной промышленности сушка сублимацией при атмосферном давлении использовалась при выработке некоторых специальных кож (например, мостовье). В настоящее время она применяется лишь в исключительных случаях для замораживания кожевенного сырья. Это связано с тем, что интенсивность процесса сублимации при атмосферном давлении невелика, и образующиеся в дерме при замораживании крупные кристаллы льда разрыхляют ткань, делая кожу слабой и тряпичной. Значительно более эффективной является сушка сублимацией при пониженном давлении. С уменьшением давления окружающей среды интенсивность испарения влаги при сублимации резко возрастает. В отличие от сушки вымораживанием при атмосферном давлении, когда основным фактором, обусловливающим скорость сушки, является температура, при сублимационной вакуумной сушке решающее значение приобретает величина остаточного давления. При давлении пара меньше 610 Па, т. е. ниже тройной (криоскопической) точки, температура испарения льда определяется только величиной давления. Технологически процесс сублимационной сушки состоит из двух операций: замораживания полуфабриката и сублимации из него замороженной влаги. Обе эти стадии оказывают существенное влияние на продолжительность сушки, на структуру и свойства кожи. Замораживание может осуществляться двумя способами:

1) предварительным выдерживанием влажного полуфабриката в специальных морозильных установках;

2) самозамораживанием его в самой сублимационной камере, предназначенной для сушки.

Как показывают исследования, с точки зрения конструктивного оформления сушилки, трудовых и энергетических затрат, организации работы, использования производственной площади неоспоримые преимущества имеет второй способ замораживания - самозамораживание. Особенно важно то, что при этом способе обеспечивается возможность управлять скоростью процесса и таким образом активно влиять на величину кристаллов льда, образующихся в дерме. В результате практически исключается опасность повреждения структуры дермы при замораживании за счет образования в ней крупных кристаллов. Сущность самозамораживания заключается в следующем. Влажный полуфабрикат, помещенный в сублимационную камеру, подвергают вакуумированию. При этом происходит интенсивное испарение влаги с его поверхности. Поскольку подвод тепла извне отсутствует, теплота, необходимая для испарения, отбирается от самого полуфабриката, происходит его охлаждение, затем замораживание содержащейся в ней свободной воды и дальнейшее охлаждение. При достижении оптимальной отрицательной температуры (зависящей от особенностей полуфабриката) дальнейшее охлаждение полуфабриката прекращают, подводя тепло. Начинается собственно процесс сублимационной сушки. Испарение влаги начинается с поверхности полуфабриката, затем зона испарения углубляется. По мере образования сухого слоя тепло к внутренним слоям полуфабриката передается в результате теплопроводности. Вследствие этого внутренние слои нагреваются медленнее и позднее наружных.

Работы по применению сублимационной сушки в производстве кожи носят исследовательский характер. Различные авторы используют в своих исследованиях отличающиеся по конструкции сублимационные установки, поэтому естественно, что существенно отличаются и предлагаемые ими режимы сушки. Однако совершенно четко установлено, что применение сублимационной сушки в вакууме дает возможность получить кожу, не уступающую по механической прочности коже, высушенной иными способами. Вместе с тем такая кожа отличается очень высокой пористостью, повышенной воздухопроницаемостью, мягкостью.


3. Компрессоры холодильных машин

3.1 Поршневые компрессоры

Поршневые компрессоры являются самыми распространенными в странах СНГ, среди установленных компрессоров с производительностью до 100 м3/мин. Данная технология используется для сжатия воздуха на протяжении уже двух столетий, в силу относительной простоты её технической реализации. По этой же причине поршневые компрессорыпоршневому были основным, и до недавнего времени единственным типом воздушных компрессоров (за исключением центробежных производительностью от 100 м3/мин) производимых в СССР. Винтовые компрессоры в то время не рассматривались как серьезная альтернатива поршневым компрессорам, в силу технологической сложности производства первых и ориентирования экономики на обслуживание компрессорной техникой предприятий-гигантов, с потреблением сжатого воздуха, значительно превосходящим 100м3/мин. Основными достоинствами поршневых компрессоров являются их заметная дешевизна по сравнению с компрессорами других типов, относительная простота производства, высокая ремонтопригодность. При своевременном обслуживании, поршневой компрессор - практически "вечная" машина. Необходимость проведения частого технического обслуживания и ремонта - является и основным недостатком поршневых компрессоров. Межсервисный интервал поршневого компрессора не превышает 500 рабочих часов. В результате нормальная ситуация для промышленных предприятий, использующих поршневые компрессоры и по сей день - когда на один работающий поршневой компрессор приходится один резервный или (и) находящийся в состоянии ремонта поршневой компрессор.

К-во Просмотров: 202
Бесплатно скачать Контрольная работа: Холодильное оборудование торговых предприятий