Контрольная работа: Холодильное оборудование
Особого внимания требует расширение применения аммиака. Аммиак по сравнению с углеводородами менее опасен. За прошедшее столетие отношение к аммиаку, как хладагенту, менялось от полного приятия до резкого отторжения, связанного с заполнением рынка хладагентов ХФУ и ГФУ, которые первоначально рассматривались как панацея, обещающая полное вытеснение МНз из холодильной техники. К счастью, этого не произошло. Аммиак, открытый 255 лет назад, с 1859 года применяется как холодильный агент, сначала в абсорбционных машинах, а с 1876 года – в компрессионных. При нулевых потенциалах разрушение озона и глобального Потепления аммиак не вызывает, термодинамически эффективен и абсолютно чист экологически. Энергетические показатели аммиачных холодильных машин и установок высоки: с энергетической точки зрения альтернативы аммиаку нет. Кроме того, аммиак обладает характерным запахом, который позволяет органолептически почти мгновенно определять его утечку. Аммиак легче воздуха и при утечке поднимается в воздух, уменьшая опасность отравления. К сожалению, зачастую эти достоинства аммиака относят к его существенным недостаткам. Действительно, аммиак теоретически взрывоопасен при объемном содержании в воздухе от 15 до 28%, однако, случаи взрыва воздушно-аммиачной смеси в практической деятельности настолько редки, что их можно отнести к разряду легенд многолетней давности, когда в холодильной технике отсутствовала надежная автоматика, а нарушение режимов эксплуатации такой техники приводило к гидроударам и, как следствие последних, – взрывам. В жизнедеятельности человека известно множество случаев взрыва бытового газа, приводящих к трагическим последствиям, но никому и в голову не приходит запретить газоснабжение квартир и домов. Следует обратить внимание и на то, что мгновенная разгерметизация аммиачной холодильной установки не приведет к моментальному выбросу аммиака в атмосферу. Выйдет только паровая фаза, которая составляет незначительную часть от общего содержания аммиака в системе. Остальной жидкий аммиак будет медленно выкипать. Аммиак не текуч в той степени, которая свойственна другим хладагентам, не взаимодействует с черным металлом, а, следовательно, все аммиачное оборудование дешево, в отличие от фреонового, для которого используют в основном цветные металлы. Отрицательные свойства аммиака проявляются только при большом его количестве (несколько тонн) в системе и при условиях, когда могут создаться критические концентрации (до 50–60 грамм на один киловатт производимого холода). В традиционной насосно-циркуляционной системе заправка аммиака составляет около 3 кг на 1 кВт холода. Кроме того, современные средства автоматизации позволяют создавать высоконадежные холодильные комплексы.
Сегодня это достаточно легко решается путем перевода крупных холодильных объектов на аммиачные установки, содержащие минимальное количество аммиака и оснащением аммиачной холодильной техники современными высоконадежными средствами автоматизации.
Это привело к расширению области применения аммиака за рубежом, в частности, к его использованию в системах кондиционирования и холодоснабжения супермаркетов. При этом были приняты меры к снижению опасности выбросов NH3 и в первую очередь к уменьшению количества заправляемого хладагента. Уменьшение количества аммиака при сохранении заданной холодопроизводительности возможно при принятии следующих мер:
•замена систем непосредственного кипения аммиака на системы с промежуточным хладоносителем;
•использование ХМ с малоемкими тешюобменными аппаратами для охлаждения промежуточных хладоносителей;
•применение новых хладоносителей, нейтральных к металлам, экологически безопасных;
•оборудование выпускаемых холодильных машин устройствами и средствами автоматизации, позволяющими локализовать аммиак в случае разгерметизации холодильной машины.
Разработчики холодильного аммиачного оборудования предлагают несколько путей перевооружения холодильных установок.
Первый путь пригоден для крупных АХУ, расположенных в городах вблизи жилых массивов. Это возврат к системе с промежуточным хладоносителем, где недостатки подобных систем охлаждения на современном витке развития технологий исключаются применением нового теплообменного оборудования, приборов автоматизации, арматуры, материалов. Рекомендуется применять блочные малоемкие холодильные агрегаты с дозированной заправкой МНз, в которых в качестве испарителей и конденсаторов применяется высокоэффективная аппаратура пластинчатого типа, в качестве хладоносителей – некорродирующие растворы, а в холодильных камерах батарейные системы охлаждения заменять малопоточными воздухоохладителями. Аммиачное оборудование в данном случае может располагаться как в традиционных центральных машинных отделениях, так и в блочных машинных отделениях контейнерного типа, оборудованных устройствами для полного поглощения аммиака в случае разгерметизации. При этом количество аммиака обычно не превышает 100–150 грамм на 1 кВт холодопроизводительности.
Второй путь модернизации и усовершенствования крупных АХУ, располагающихся в промзонах, вдали от жилых массивов и общественных объектов. Этот путь эффективен для предприятий с большим числом разнотемпературных потребителей холода и обеспечивает снижение аммиако-емкости систем охлаждения почти на порядок.
Третий путь является весьма перспективным, заключается в разработке агрегатированных блочных аммиачных установок непосредственного кипения аммиака по типу фреоновых, так называемых сплит-систем. Холодильные машины с небольшим количеством NH3 размещаются в специальных герметичных контейнерных блоках, а аммиак в случае разгерметизации полностью поглощается нейтрализаторами, не попадая в окружающую среду. Подобные аммиачные установки уже в настоящее время широко применяются в Японии и США.
Холодильные и морозильные камеры. Устройство, виды, применение
Конструктивно все виды торгового холодильного оборудования имеют много общего. Основной несущей конструкцией является металлический каркас различной, в зависимости от назначения оборудования, конфигурации. С внешней и внутренней стороны он облицован пластиком, стеклом либо стальными листами, покрытыми синтетической эмалью. В качестве технологических декоративных элементов могут использоваться: нержавеющая сталь, цветной слоистый пластик; алюминиевый профиль; стекло (плоское, гнутое, цветное); зеркала.
Стенки и дверцы торгового холодильного оборудования имеют многослойную конструкцию. За внешними отделочными материалами следует: гидроизоляционная прослойка (пергамин, пергаментная бумага, полиэтиленовая пленка и др.), а затем теплоизоляционный слой (пенопласт, мипора, стекловата, шлаковата, пенополистирол)
После теплоизоляционного слоя вновь проложена гидроизоляционная прокладка и далее следует внутренняя отделка охлаждаемого пространства. Поскольку внутренняя поверхность охлаждаемых камер может соприкасаться с продуктами, она должна быть выполнена из нейтральным не коррозирующих материалов (нержавеющая сталь, пищевой алюминий, эмалированная сталь).
Для более эффективного использования внутреннего охлаждаемого объема шкафы, прилавки, витрины, камеры оборудуют стеллажами, полками, кассетами, кронштейнами, изготовленными из тех же нейтральных материалов.
Холодильные и морозильные камеры использует широкий круг потребителей – от небольших предприятий до огромных складских комплексов, нуждающихся в создании специальных условий хранения.
По своему назначению, устройству и правилам эксплуатации такие камеры аналогичны маленьким стационарным холодильникам.
По площади, необходимой для размещения товаров в таре, подбирают тип и количество немеханического складского оборудования, площадь которых и составляет потребную грузовую охлаждаемую площадь.
Холодопроизводительность машины должна быть достаточной для поддержания в холодильных камерах заданных температурных режимов и отвода теплопритоков. Расчет потребной холодопроизводительности машины начинают с определения суммы всех теплопритоков по каждой камере в отдельности, а затем по холодильнику в целом (калорический расчет).
Общая сумма теплопритоков включает следующие теплопритоки:
- поступающие через ограждения с наружным вентиляционным воздухом;
- вносимые с продуктами и тарой;
- за счет открывания дверей, пребывания людей в камерах, нагрева ламп освещения.
Определив сумму теплопритоков, выбирают охлаждающую систему – непосредственного или рассольного охлаждения. Непосредственное охлаждение испарительными батареями, в которых происходит кипение хладагента, имеет более широкое распространение благодаря большей экономичности, меньшей громоздкости оборудования и возможности автоматизации процессов охлаждения.
Однако в некоторых случаях вместо системы непосредственного охлаждения целесообразно применять рассольную систему охлаждения, например, при большом удалении холодильных камер от машинного отделения при необходимости обеспечения стабильного температурного режима и если правилами техники безопасности запрещается применять непосредственное охлаждение.
Затраты на установку и эксплуатацию рассольной системы охлаждения оправдывают себя в крупных холодильниках с количеством камер более четырех и потребной холодопрозводительностью машин не менее 13 900 Вт или 12 000 ккал/ч (с учетом переводного коэффициента 1 Вт = = 0,86 ккал/ч).
Расчет холодильной установки непосредственного охлаждения начинают с группировки холодильных камер с примерно одинаковыми температурными режимами и величинами теплопритоков. При этом учитывают, что на две – четыре камеры с равными условиями хранения приходится одна холодильная машина.
Потребную холодопроизводительность машины для каждой группы камер определяют исходя из часового расхода холода и коэффициента рабочего времени.