Контрольная работа: Конструкции тканевых и рукавных фильтров для очистки от пыли
2.Рукавные фильтры
Рукавные фильтры - надежные и эффективные пылеулавливающие аппараты, предназначенные для сухой очистки промышленных газов. Рукавный фильтр представляет собой металлический корпус, разделенный перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов подвешенных на монтажных (опорных) решетках. Внизу рукавного фильтра находится бункер для сбора пыли, выгрузку пыли и герметичность обеспечивают шнек и шлюзовой питатель. Регенерация (очистка) рукавов фильтра происходит поочередно кратковременными импульсами сжатого воздуха. Управление регенерацией осуществляет контроллер, который задает частоту, и продолжительность импульсов по перепаду давления при помощи дифманометра.
Рукавные фильтры нашли широкое применение в различных отраслях промышленности: химической, целлюлозно-бумажной, деревообрабатывающей, теплоэнергетической, нефтеперерабатывающей, черной и цветной металлургии, производстве строительных материалов, пищевой, текстильной и многих других.
Фильтрующим элементом рукавных фильтров является фильтровальные рукава, сшитые из фильтрующего материала, который подбирается в зависимости от условий эксплуатации и состава пыли.
Существующие фильтровальные материалы могут применяться:
-при повышенной влажности;
-в кислотно-щелочной среде;
-при высоких температурах;
-в условиях высокой абразивности газопылевого потока;
Рукавные фильтры применяются для очистки промышленных газов от пыли при концентрации до 60 г/м3. Однако при применении специальных устройств, понижающих входную концентрацию пыли, рукавным фильтрам по силам противостоять концентрации до 200г/м3. После рукавного фильтра очищенный воздух может содержать менее 10 мг/м3 пыли.
Рукавные фильтры чаще применяются при температуре очищаемого газа, в диапазоне температур 20-260°С, но так же существуют материалы, рассчитанные на работу при температуре до 350°С.
В зависимости от гранулометрического состава пыли и начальной запыленности степень очистки (КПД) может составлять 98-99,9% при объеме фильтруемого газа 0,4-1,6 м3/м2мин.
Регенерация (очистка от осевшей пыли) рукавов в процессе работы фильтра осуществляется автоматически путем их встряхивания, с помощью импульсов сжатого воздуха, что является преимуществом данных газоочистных аппаратов или же методом обратной продувки и вибрационным способом, что менее эффективно. Имеются мембранные клапаны, которые позволяют провести процесс регенерации при помощи усовершенствованной импульсной электронной системы регенерации рукавов. В настоящее время самым эффективным является автоматическая продувка рукавного фильтра импульсами сжатого воздуха.
2.1 Классификация рукавных фильтров:
- фильтр рукавный
- фильтр ячейковый
- кассетный фильтр
- фильтр фки
- фильтр фри
- фильтр фрки
- фильтр фки
Конструкции матерчатых фильтров весьма разнообразны. Наиболее распространенной классификацией рукавных фильтров является разделение по способу регенерации и форме фильтровальных рукавов.
Наибольшее распространение в настоящее время получили фильтры с цилиндрической формой рукава (рукавные фильтры). Однако к рукавным фильтрам иногда относят кассетные и другие типы матерчатых фильтров. В дальнейшем, под названием "Матерчатые фильтры" будут предполагаться конструкции фильтров, имеющих цилиндрическую или иную форму фильтровальных элементов, изготовленных из ткани, нетканого иглопропробивного, холостопрошивного, клееного, войлочного гибкого фильтровального материала. К данной категории не будут относиться фильтры с фильтровальными элементами из керамики, металлокерамики и других жестких, а также объемных фильтровальных материалов.
Рукавные фильтры с цилиндрической формой фильтровального элемента широко распространены в различных отраслях промышленности, имеют много преимуществ по сравнению с другими конструкциями матерчатых фильтров. Однако, наряду с достоинствами, они имеют существенный недостаток, заключающийся в сравнительно небольшой поверхности фильтрации, приходящейся на единицу объема рабочей камеры фильтра.
Стремление к более компактному размещению фильтровального материала в рабочей камере фильтра привело к созданию оригинальных конструкций, многие из которых нашли практическое применение в различных отраслях промышленности.
В процессе работы матерчатых фильтров происходит постепенное отложение пыли в порах фильтровального материала и на его поверхности. По мере роста слоя пыли растет и гидравлическое сопротивление аппарата.
Если периодически не удалять пылевой слой с поверхности материала и из его пор произойдет "запирание фильтра", т.е. тягодутьевой аппарат (обычно вентилятор) будет не в состоянии протягивать газ через забившуюся фильтровальную перегородку (производительность по воздуху будет снижаться). Для поддержания фильтра в работоспособном состоянии необходимо периодически удалять пыль с поверхности фильтровального материала из пор.
Однако, как известно, оседающий на поверхности фильтровального материала слой пыли одновременно является фильтрующей средой, препятствующей проскоку наиболее мелких частиц пыли. Поэтому с фильтровального материала необходимо удалить не весь слой пыли, а только часть, чтобы обеспечить приемлемое гидравлическое сопротивление аппарата и сохранить его высокую эффективность пылеулавливания. Процесс удаления части пылевого слоя снаружи и изнутри фильтровальной перегородки в матерчатых фильтрах принято называть регенерацией, т.е. частичным восстановлением первоначальных свойств фильтровальной перегородки.
В промышленной эксплуатации в настоящее время находится много конструкций, систем, устройств для регенерации фильтровального материала. Основные способы регенерации фильтровального материала: механическое встряхивание (в этом случае пыль удаляется с поверхности фильтровального материала), обратной продувкой (в этом случае пыль удаляется с поверхности и из пор фильтровального материала) и сжатым воздухом.