Контрольная работа: Концепции современного естествознания

Для бесконечно малых приращений параметров состояния первое начало термодинамики можно сформулировать: элементарное количество теплоты, сообщенное термодинамической системе, идет на изменение ее внутренней энергии и совершение системой работы. Количество теплоты, как следует из первого начала термодинамики, измеряется в тех же единицах, что работа или энергия, т.е. в Джоулях. Существует механический эквивалент теплоты, определенный экспериментально. 1 Дж = 4.19 кал.


5. Приведите уравнение состояния идеального газа. Какая величина является мерой средней кинетической энергии молекул? Можно ли передать телу некоторое количество теплоты без изменения его температуры?

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа состояние газа описывается уравнением Менделеева — Клапейрона:

pV = mRT/M,

где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная.

Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R = 8,31 ДжДмоль • К)).

Уравнение Менделеева — Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.

От температуры зависит величина средней кинетической энергии молекул. Поэтому говорят, что температура - мера средней кинетической энергии молекул.

Таким образом, передать телу некоторое количество теплоты без изменения его температуры нельзя.

6. Дайте понятие об обратимых и необратимых процессах. Приведите примеры. Как строится термодинамика открытых систем? Дайте представление о прямой и обратной связи в сложной системе.

Процесс, в ходе которого термодинамические параметры во всех точках одинаковы, называется равновесным. Его на графике можно изображать сплошной линией.

Неравновесным называется процесс, в котором условия равновесности не соблюдаются. Такой процесс на графике можно изображать пунктиром.
Любой равновесный процесс теоретически обратим, т.е. его можно «пустить» в обратном направлении. Неравновесный - необратим, т.к. он стремится в направлении установления равновесия. Пример необратимого процесса - переход механической энергии в тепло.

Открытые системы, в которых наблюдается прирост энтропии, получили название диссипативных. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного хаотического движения, т.е. в тепло. Если замкнутую систему вывести из состояния равновесия, то в ней начнутся процессы, возвращающие ее к состоянию термодинамического равновесия, в котором ее энтропия достигает максимального значения. Со временем степень неравновесности будет уменьшаться, однако, в любой момент времени ситуация будет неравновесной. В случае открытых систем отток энтропии наружу может уравновесить ее рост в самой системе. В этих условиях может возникнуть и поддерживаться стационарное состояние.

Сложная система - составной объект, части которого можно рассматривать как отдельные системы, объединенные в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Части сложной системы (подсистемы) можно расчленить на более мелкие подсистемы и т. д., вплоть до выделения элементов сложной системы. Свойства сложной системы в целом определяются как свойствами составляющих ее элементов, так и характером взаимодействия между ними, т.е. связь бывает прямой и обратной.

7. Когда возникает металлическая связь? Дайте представление о теории металлов (классической и квантовой), полупроводниках, диэлектриках и изоляторах.

Связь, которая образуется в результате взаимодействия относительно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свободные электроны, оторвавшиеся от атома, перемещаются между положительными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристаллической решетки металлов.

Классическая теория - электроны ведут себя, как атомы идеального газа, но сталкиваются не между собой, а с ионами кристаллической решетки, чем объяснялось сопротивление металлов. Согласно классической теории, один грамм-моль вещества, содержащий N частиц, должен обладать энергией 3RT или теплоемкостью в 6 кал/моль.

Квантовая теория металлов - внешние электроны обладают коллективными свойствами, и их кинетическая энергия должна быть порядка ионизационного потенциала, т.е. (5-10) эВ вместо 3 • 10~2 эВ. Впоследствии была учтена разработанная для электронов в соответствии с принципом Паули статистика Ферми-Дирака, волновая природа электронов, и движение их в решетке металла стали рассматривать как рассеяние электронных волн. «Валентные электроны» в металле приобрели черты сжатого газа, который подчиняется статистике не Максвелла, а Ферми-Дирака.

Полупроводники характеризуются тем, что электроны полностью занимают валентную зону. Поэтому для увеличения энергии электрона ему нужно сообщить энергию, достаточную для преодоления запрещенной зоны. Поэтому электрические свойства кристалла определяются шириной запрещенной зоны. Электрическое поле не в состоянии сообщить такую энергию, и для небольшой ширины зоны может быть достаточно тепловой энергии. Изоляторы имеют большую ширину запрещенной зоны, и тепловой энергии уже недостаточно для перевода электронов через нее.

Собственная проводимость возникает в результате переходов электронов с верхних уровней валентной зоны в зону проводимости. Так идут два процесса: появление попарно свободных электронов и дырок и рекомбинация, которая приводит к попарному исчезновению электронов и дырок. В отсутствие поля они движутся хаотически. При включении поля происходит перенос заряда в кристалле, который накладывается на хаотическое движение.

8. Поясните, как распределяется на Земле солнечная энергия. Дайте понятие о негэнтропии солнечного излучения.

Солнечная энергия распределена неравномерно - в экваториальных широтах поверхность Земли перпендикулярна падающим лучам Солнца и нагрев максимальный, а в полярных широтах те же лучи, падая под углом на поверхность Земли, нагревают гораздо большие по площади участки - минимальный нагрев.

Из-за наклона оси вращения в зависимости от времени года область, получающая максимальное количество солнечной энергии перемещается в интервале от 12 с.ш. во время летнего солнцестояния в северном полушарии ( 21 июня) до 8 ю.ш. во время летнего солнцестояния в южном полушарии ( 21 декабря - в северном полушарии в это время зимнее солнцестояние, соответственно).

Земные источники энергии - термальные воды, тектоническая и вулканическая активность - вносят малую долю от потока энергии, поступающей на поверхность Земли от Солнца. Температура земной поверхности - около 300 градусов по Кельвину, солнечной поверхности - около 6000. Поступающая при такой колоссальной разности температур энергия имеет очень низкую энтропию, она вызывает движение воздуха и морские течения, круговорот воды в природе, является источником жизни. Первичным живым потребителем негэнтропии солнечного излучения являются зеленые растения. Они преобразуют минеральные вещества и органические остатки в высокоорганизованные вещества за счет этой негэнтропии. Растениями питаются травоядные животные, травоядными - плотоядные. На каждом этапе происходят потери негэнтропии, растет энтропия, выделяемая в отходах, биомассы на верхних уровнях пищевой пирамиды становится все меньше. Пройдя все ступени превращений, все вещества вновь возвращаются в деградированное состояние. Непрерывный круговорот жизни, так же, как и круговорот воды, требует очень высокой оплаты. Природа оплачивает этот круговорот низкой энтропией и большим количеством солнечной энергии. Этим же источником энергии и негэнтропии оплачена в течение двух-трех миллиардов лет вся эволюция жизни на Земле[3] .

9. Поясните смысл гипотезы Планка о дискретном характере испускания света? Насколько были решены при этом противоречия в теории теплового излучения?

Первоначально гипотеза Планка в ее наиболее смелой форме состояла в предположении, что вещество может поглощать энергию излучения только конечными порциями, пропорциональными частоте. Успех теории черного излучения подтвердил справедливость этой гипотезы. Но если эта гипотеза верна, то представляется вполне вероятным, что дискретная природа света, проявляющаяся в моменты поглощения и испускания, должна сохраняться также и в остальные промежуточные моменты времени, т.е. тогда, когда излучение свободно распространяется в пространстве.

Эйнштейн объяснил данные наблюдений, опираясь на гипотезу Планка, которую он интерпретировал с помощью предположения, что свет состоит из так называемых световых квантов, то есть из квантов энергии, которые движутся в пространстве подобно маленьким корпускулам. Энергия отдельного светового кванта, в согласии с гипотезой Планка, должна равняться частоте света, помноженной на постоянную Планка.

Гипотеза Планка противоречит классической электродинамике, поскольку, согласно последней, электромагнитные волны излучаются зарядом, движущимся ускоренно. Ускорение же частиц никаких скачков не предполагает.

За тридцать лет своего существования гипотеза о дискретности природы света оказалась настолько плодотворной, что в настоящее время уже не остается сомнений в ее достоверности. Она открывает новую существенную сторону физической реальности. Но эта гипотеза встречает на своем пути также трудности и вызывает возражения, возникшие еще во времена первых работ Эйнштейна по квантовой теории света.

Прежде всего, возникает вопрос, как совместить дискретность структуры света с волновой теорией, столь неоспоримо подтвержденной многими точными экспериментами? Как совместить между собой существование неделимого кванта света и явления интерференции? В частности, как показал Лоренц, невозможно определить разрешающую способность оптических инструментов (например, телескопа), исходя из предположения о концентрации световой энергии в фотонах, локализованных в пространстве[4] .

10. Каково строение Солнца и его атмосферы? Каковы проявления и закономерности солнечной активности? В каком состоянии находится солнечное вещество? Каков состав солнечного излучения? Что такое солнечный ветер? Как он проявляется на Земле?

Солнце представляет собой сферически симметричное тело, находящиеся в равновесии. Всюду на одинаковых расстояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру. Плотность и давление быстро нарастают вглубь, где газ сильнее сжат давлением вышележащих слоёв. Следовательно, температура также растёт по мере приближения к центру. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоёв, постепенно переходящих друг в друга.

К-во Просмотров: 176
Бесплатно скачать Контрольная работа: Концепции современного естествознания