Контрольная работа: Материаловедение Схема строения
Мартенситный интервал температур определяется химическим составом аустенита. Чем больше в аустените углерода, тем при более низкой (но постоянной) температуре происходит превращение аустенита в мартенсит (рис. 5). Температура в точке Мк , так же как температура в точке Мн , понижается с повышением в аустените углерода. При содержании углерода более 0,6 % мартенситное превращение заканчивается при температурах ниже нуля. Поэтому, для того чтобы в высокоуглеродистых сталях получить большее количество мартенсита, их следует охлаждать до температур ниже нуля.
Аустенито-мартенситное превращение сопровождается увеличением объема. Все структуры стали можно расположить (от максимального объема к минимальному) в следующий ряд: мартенсит — троостит — сорбит — перлит — аустенит.
При аустенито-мартенситном превращении мартенсит образуется в форме пластин, но обнаружить в плоскости шлифа мартенситную пластину трудно. Обычно в зависимости от угла сечения пластин плоскостью шлифа они наблюдаются под микроскопом в виде игл различной толщины.
Мартенситные пластины образуются почти мгновенно, со скоростью более 1000 м/с, только в пределах аустенитного зерна и не переходят границу между зернами. Поэтому размер игл мартенсита зависит от размера зерен аустенита. Чем мельче зерна аустенита, тем мельче иглы мартенсита и структура характеризуется как крупноигольчатый или мелкоигольчатый мартенсит. При наличии очень мелких игл, не различимых под микроскопом при обычно применяемых увеличениях (в 500—600 раз), мартенсит называют бесструктурным или скрытокристаллическим. Такая структура характерна для правильно закаленной стали. Пластинчатый (игольчатый) мартенсит образуется при закалке в средне- и высокоуглеродистых сталях.
Реечный мартенсит (называемый также пакетным) наблюдается в закаленных низко- и среднеуглеродистых сталях. Кристаллы этого мартенсита имеют вид реек (планок), вытянутых в одном направлении. Эти рейки объединены в пакеты. В одном зерне аустенита может быть несколько таких пакетов.
Рис.6. Соотношение между решетками старой (аустенит) и новой (мартенсит) фаз при мартенситном превращении
Мартенситное превращение состоит в закономерной перестройке решетки, при которой атомы не обмениваются местами, а лишь смещаются одни относительно других на расстояния, не превышающие межатомные. При этом необходимо, чтобы граница раздела между старой (аустенит) и новой (мартенсит) фазами была когерентной, т. е. чтобы между решетками аустенита и мартенсита существовало хорошее сопряжение (рис. 6, а). Только при этих условиях возможно одновременное направленное перемещение атомов на расстояния, не превышающие межатомные, когда соседи любого атома в аустените являются соседями этого же атома в мартенсите (кооперативное превращение).
Поскольку объем аустенита отличается от объема мартенсита, на границе между ними возникают напряжения, все время усиливающиеся с ростом мартенситного кристалла и вызывающие пластическую деформацию в аустените. В результате пластической деформации нарушается когерентность решеток мартенсита и аустенита, образуется некогерентность решеток мартенсита и аустенита, появляется некогерентная граница (значительные искажения в расположении атомов, рис. 6, б); превращение может идти только диффузионным путем, а при низких температурах диффузионный переход невозможен, поэтому рост мартенситного кристалла прекращается.
Характерным для мартенситного превращения является также измельчение блочной структуры, появление в кристаллах мартенсита большого числа микродвойников, повышение плотности дислокаций, что наряду с образованием пересыщенного углеродом твердого раствора с тетрагональной кристаллической решеткой обуславливает высокую твердость мартенсита (HRC 60-65).
Легирующие элементы не изменяют характера мартенситного превращения, но существенно влияют на температурный интервал этого превращения.
Содержание легирующего элемента
Рис. 7. Влияние легирующих элементов на температуру начала мартенситного превращения Мн (а ) и на количество остаточного аустенита в стали после закалки (б).
Большинство легирующих элементов (марганец, хром, никель, молибден и др) понижают мартенситную точку Мн (рис.7, а ), отдельные элементы (алюминий, кобальт) повышают мартенситную точку Мн , а кремний не оказывает заметного влияния на положение этой точки.
Изменение температурного интервала мартенситного превращения отражается на количестве остаточного аустенита в структуре закаленной стали (рис.7, б). Если легирующий элемент снижает температуру начала мартенситного превращения до нуля (например, марганец при содержании 5% и более), то в этом случае структура стали после закалки будет состоять только из аустенита.
3. По диаграмме состояний железо—цементит опишите, какие структурные и фазовые превращения будут происходить при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Охарактеризуйте это сплав и определите для него при заданной температуре количество, состав фаз и процентное соотношение, используя данные, приведенные в табл. 2. Постройте кривую охлаждения сплава
Дано: С=2,3%, Т=1240°С.
|
|
|
|
|

Рис. 8 Диаграмма состояния «железо – цементит»
Сплав с содержание углерода 2,3% , характерен тем, что претерпевает эвтектическую кристаллизацию при эвтектической температуре 1147°С по эвтектической горизонтали ЕСF.
В интервале температур 1420 - 1147°С из жидкой фазы выделяются кристаллы аустенита. По мере охлаждения жидкая фаза обогащается углеродом. Концентрация углерода в ней изменяется по линии ликвидуса ВС. При температуре 1147°С оставшаяся часть жидкого сплава достигает концентрации 4,3% С (Эвтектическая точка С). Жидкий сплав затвердевает при постоянной температуре 1147°С с образованием эвтектики (ледебурита), состоящей из аустенита состава 2,14% С и цементита Ц:
ЖС4,3 ®А2,14 +ЦЭ .
Непосредственно после затвердевания белый доэвтектический чугун имеет структуру: аустенит+ледебурит (А+Цэ ) или А+Л.
Сплавы с содержанием углерода более 2,14%, в которых кристаллизация происходит с образованием эвтектики (ледебурита), называются белыми чугунами.
При температуре 1240°С сплав имеет две фазы (жидкую и кристаллическую), следовательно К=2, Ф=2 и степень свободы системы
С=К+В-Ф=2+1-2=1.
Это значит, что можно менять температуру сплава, но тогда каждой температуре будет соответствовать определенная концентрация фаз.
По правилу отрезков коноды общую массу сплава Qобщ приравниваем к длине коноды (ае при Т=1240 ° С), тогда количество жидкой фазыQж и количество твердой фазы Qтв определяются отрезками и
, которые образовались при пересечении коноды с линией сплава.