Контрольная работа: Микроуровневая маркетинговая информационная система
Методы динамического программирования применяются при решении оптимизационных задач, в которых целевая функция или ограничения, или же первое и второе одновременно характеризуются нелинейными зависимостями. Признаками нелинейности является, в частности, наличие переменных, у которых показатель степени отличается от единицы, а также наличие переменной в показателе степени, под корнем, под знаком логарифма.
Примеры нелинейных зависимостей достаточно обширны. Например, экономическая эффективность производства возрастает или убывает непропорционально изменению масштабов производства; величина затрат на производство партии деталей возрастает в связи с увеличением размеров партии, но не пропорционально им. И в том, и в другом случае мы, по существу, сталкиваемся с проблемой переменных и условно-постоянных издержек.
Известно, что себестоимость с увеличением объема выпускаемой продукции понижается, но при нарушении ритмичности производства она может и возрастать, (за счет оплаты сверхурочных работ в конце отчетного периода). Здесь затраты представляются, как и в вышеприведенной ситуации, нелинейной функцией от объема производства.
Нелинейной связью характеризуются величины износа производственного оборудования в зависимости от времени его работы, удельный расход бензина (на 1 км пути) — от скорости движения автотранспорта и многие другие хозяйственные ситуации.
Использование в экономическом анализе метода динамического программирования покажем на простейшем примере.
Имеется некое транспортное средство грузоподъемностью W. Требуется заполнить его грузом, состоящим из предметов W различных типов, таким образом, чтобы стоимость всего груза оказалась максимальной.
Для этого введем соответствующие обозначения:
Рi—вес одного предмета i-го типа; Vi — стоимость одного предмета i-го типа; xi —число предметов i-го типа, загружаемых на имеющееся транспортное средство.
Необходимо подобрать груз максимальной ценности с учетом грузоподъемности транспортного средства W.
Математически формализовать данную экстремальную задачу можно следующим образом:
при ограничениях:
Решение задачи разбивается на п этапов, на каждом из которых определяется максимальная стоимость груза, состоящего из предметов 1-го типа (первый этап), 1-го и 2-го типов (второй этап) и т. д. Для этого воспользуемся рекуррентным соотношением (критерием оптимальности Беллмана):
— максимальная ст-ть груза, состоящего из предметов N-го типов;
—стоимость взятых предметов N-гo типа;
—максимальная стоимость груза, состоящего из предметов (N— 1) типа с общим весом не более
—наибольшее целое число, не превосходящее.
Будем считать, f0(W) = 0 для любого W. Последовательно найдя значение функций f1,(W), f2(W),..., fn(W), можно получить полное решение сформулированной задачи.
Пусть:
Р1, = 4; Р2 = 3; Р3 = 2; Р4 = 1 (единиц груза); V1, = 28; V2 = 20; V3 = 13; V4 = 6 (денежных единиц); грузоподъемность транспортного средства W = 10 (единиц груза).
Найдем последовательно значения функций b1(W): f1(W), f2(W), f2(W), f3(W), при различных значениях W(0< W<10).
Таким образом, максимальная стоимость груза f4(10) равна 69 денежным единицам, при этом предметы 4-го типа загружать не следует, так как f4(10) = 69 достигается при х4= О (табл. 6.7).
Таблица 6.7
W |
0—3 |
4—7 |
К-во Просмотров: 233
Бесплатно скачать Контрольная работа: Микроуровневая маркетинговая информационная система
|