Контрольная работа: Основные клеточные органоиды. Факторы обеспечения нормальной жизнедеятельности растений

АДФ получает энергию путем дефосфорилирование фосфоэнолпировиноградной кислоты под действием фермента трансфосфорилазы, которая переносит макроэргическую связь с кислоты на АДФ.

Уридиндифосфорная кислота (УДФ) и ее производные принимают участие во взаимопревращении углеводов.

При биосинтезе гликозидной связи используется уридиндифосфатглюкоза (УДФГ), образующаяся из глюкозы‑1‑фосфата и уридинтрифосфата (УИФ). Если УДФГ передает глюкозу фруктозе, то образуется сахароза, а если цепочке декстрина – полисахарид. Аналогично образуются гликозиды, гликопротеиды и др.

Взаимопревращение моносахаридов проходит через фосфорные эфиры сахаров или их уридиндифосфатпроизводные (УДФ-производные). УДФ-производные сахаров представляют собой тот или иной сахар, соединенный через два остатка фосфорной кислоты с уридином.

Сахарофосфаты являются источником фосфорного питания растений. Могут быть соли орто-, мета- и пирофосфорной кислоты и органические фосфаты. Лучшие из них – водорастворимые калиевые, натриевые, аммониевые, кальциевые и магниевые соли фосфорной кислоты.

3. Условия, необходимые растению для нормального водообмена. Физиологические особенности засухоустойчивых растений

Для растений необходимо, чтобы осадки относительно равномерно распределялись в период активного роста.

Под засухой понимают режим погоды, характеризующийся отсутствием осадков, повышением температуры воздуха и падением относительной влажности воздуха. Различают два типа засухи – атмосферную и почвенную. Следует подчеркнуть, что засуха, за очень редким исключением, всегда начинается как атмосферная засуха, переходя затем в почвенную. В то же время атмосферная засуха может быть и при отсутствии почвенной, когда она проявляется в виде горячего ветра-суховея. Вред от суховея наблюдается и тогда, когда в почве еще имеются значительные запасы воды.

Если в почве имеется недостаточное количество доступной для растения воды, то отрицательное влияние перегрева становится особенно сильным. Перегрев вызывает повреждение растения, называемое запалом. Запал обнаруживается через некоторое время в виде различно окрашенных некротических пятен на листьях. На пшенице появляются желтые пятна, на овсе – красные, у большинства растений – коричневые.

Встречается и другой вид повреждений от атмосферной засухи – захват. Он наблюдается реже, чем запал, и проявляется в том случае, когда при сравнительно не очень высоких температурах наблюдаются сильный ветер и большая сухость воздуха. При этом листья просто высыхают, сохраняя зеленую окраску.

Недостаток воды в тканях растений (водный дефицит) может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растение регулирует уровень водного дефицита открытием или закрытием устьиц. В этот период происходит временное завядание листьев. Обычно в вечерние и утренние часы это явление устраняется.

Отсутствие в почве доступной для растения воды приводит к глубокому завяданию. Это завядание чаще всего приводит к гибели растения. Характерным признаком устойчивого водного дефицита является сохранение его в тканях утром, прекращение выделения пасоки из срезанного стебля. Действие засухи приводит в первую очередь к уменьшению в клетках свободной воды, что нарушает гидратные оболочки белков цитоплазмы и сказывается на функции белков-ферментов.

Приспособление растений к засухе. Известно, что растения неодинаково реагируют на перегрев и обезвоживание в разные периоды онтогенеза. У каждого вида в онтогенезе имеется такой период, когда недостаток воды резко сказывается на течении всех физиологических процессов, этот период называется критическим периодом. Из этого, однако, не следует, что остальные периоды своего развития растение не нуждается в воде и не страдает от ее недостатка.

Установлено, что вязкость цитоплазмы, ее эластичность в критический период резко падают, что и является одним из условий высокой чувствительности растений к перегреву и обезвоживанию в этот период развития. В критический период происходят интенсивные ростовые процессы и образование новых органов – цветков.

Ф.Д. Сказкин считал, что высшие растения в своем онтогенезе повторяют черты далекого прошлого и во время формирования половых органов и оплодотворения нуждаются в повышенной обводненности тканей. Сказкин считает, что началом критического периода следует считать момент появления материнских клеток пыльцы в археспориальной ткани пыльников, а концом данного периода – оплодотворение.

Засухоустойчивые сорта при значительном водном дефиците характеризуются синтетической направленностью в работе своих ферментов, тогда как у менее засухоустойчивых преобладает гидролитическая направленность. Засухоустойчивые сорта озимой пшеницы характеризуются большим содержанием связанной воды, которая трудно обменивается во время засухи, повышенной концентрацией клеточного сока в период цветения и налива зерна, высшим порогом коагуляции белков, более интенсивным накоплением сухого вещества зерна, более стойкой к неблагоприятным условиям пигментной системой. Этим и характеризуется физиологическая природа засухоустойчивости растений.

4. Нарушение водообмена. Его причины и последствия

Нарушение водообмена у растений происходит при недостаточном водоснабжении, то есть, при наступлении засухи.

Засуха– неблагоприятное сочетание метеорологических условий, которые не обеспечивают потребностей растения в воде. Засуха бывает почвенная и атмосферная. Причины почвенной засухи – отсутствие дождя на протяжении длительного времени, испарение с поверхности почвы и транспирация, что приводит к высушиванию корнеобитаемого слоя почвы. Последнюю высушивают также сильные ветры. При почвенной засухе влажность воздуха бывает пониженной. Атмосферная засуха вызывается массами сухого и нагретого воздуха (суховея). Засуха, как почвенная, так и атмосферная, задерживает рост растений, уменьшает их листовую поверхность, в результате чего урожай снижается.

Влияние почвенной (обезвоживание) и атмосферной (перегрев) засух проявляется многими признаками. Под влиянием обезвоживания нарушается синтетическая способность растений, наблюдается распад белков и изменяется коллоидно-химическое состояние цитоплазмы, снижается количество накопленного растением органического вещества из-за задержки роста листьев и уменьшается их рабочая поверхность. Особенно чувствительны к засухе листья, находящиеся в фазе эмбрионального роста. При подсыхании из листьев исчезает крахмал. Усиленный распад этого полисахарида не сопровождается накоплением гексоз, поскольку они используются в процессе дыхания. При потере воды усиливается распад белковых веществ.

Опыты с растениями тыквы и огурца (В.Н. Жолкевич, Т.Ф. Корецкая) показали, что почвенная засуха вызывает глубокое нарушение фосфорного обмена в корневой системе, что приводит к уменьшению в корнях количества АТФ, нуклеиновых кислот – РНК и ДНК, уменьшению содержания белков и увеличению в 7–10 раз сахаров, особенно фруктозы и глюкозы. Задержка фосфорилирования Сахаров вызывает уменьшение содержания органических кислот – пировиноградной кислоты, а также кислот цикла Кребса – α-кетоглютаровой, янтарной, фумаровой, щавелевоуксусной, яблочной и лимонной, являющихся акцепторами аммиака при синтезе аминокислот.

В корнях и в пасоке повышается содержание амидов, преимущественно глютамина. Следовательно, симптомами угнетения растений почвенной засухой прежде всего является нарушение энергетического обмена через уменьшение фосфорилирования, а также задержку синтеза белков. Длительные засухи приводят к резкому снижению урожая.

Как показали исследования Н.М. Сисакяна, при обезвоживании растительных тканей изменяется направленность действия ферментов в сторону гидролиза и задерживаются синтетические процессы и рост. Ростовые процессы задерживаются некоторое время даже после возобновления водоснабжения, поскольку восстановление синтетической направленности ферментов происходит не сразу. Различные части растения неодинаково устойчивы к засухе и неодинаково на нее реагируют.

Установлено, что растения, перенесшие небольшую засуху, повторную переносят с меньшими потерями. Однако устраивать искусственную закалку взрослых растений в производственных условиях трудно. П.А. Генкель предложил подвергать закаливанию наклюнувшиеся семена. Опыт показал, что растения, выросшие из семян, подвергнутых предпосевной закалке, приобретают повышенную устойчивость к засухе.

Растворы сахаров (глюкоза, галактоза, сахароза, маннит, лактоза, мальтоза, раффиноза) при инфильтрации в ткани листьев значительно повышают их устойчивость к высоким температурам. Считают, что сахара «консервируют» структуру митохондрии, которая становится нечувствительной к тепловому влиянию, и этим сохраняют функцию митохондрий – процесс дыхания и окислительное фосфорилирование (Ю.Г. Молотковский, И.М. Жесткова).

Засухоустойчивые сорта при значительном водном дефиците характеризуются синтетической направленностью в работе своих ферментов, тогда как у менее засухоустойчивых преобладает гидролитическая направленность. Засухоустойчивые сорта озимой пшеницы характеризуются большим содержанием связанной воды, которая трудно обменивается во время засухи, повышенной концентрацией клеточного сока в период цветения и налива зерна, высшим порогом коагуляции белков, более интенсивным накоплением сухого вещества зерна, более стойкой к неблагоприятным условиям пигментной системой. Этим и характеризуется физиологическая природа засухоустойчивости растений.

5. Источники углерода для растений. Усвоение углекислоты и лучистой энергии солнца при фотосинтезе. Лист как орган фотосинтеза

Углекислый газ поступает в растения из воздуха, превращаясь с помощью лучистой энергии солнца в сложные, высокоэнергетические органические соединения, которыми питается животный мир. Животные, используя потенциальную энергию органических веществ, снова освобождают углекислый газ. Согласно современным представлениям, приведенное выше уравнение фотосинтеза можно изобразить в виде схемы:

Следовательно, фотосинтез состоит из двух сопряженных систем реакций: окисления воды до кислорода и восстановления углекислого газа водородом воды до полисахаридов.

Лист сверху и снизу покрыт бесцветной кожицей, малопроницаемой для газов кутикулой. Углекислый газ, который усваивается в процессе фотосинтеза, поступает в лист через устьица. На 1 см2 поверхности листа на долю устьиц приходится лишь 1 мм2 , остальная площадь – на непроницаемую кутикулу. Диффузия СО2 в лист происходит очень интенсивно. Например, 1. см2 листовой поверхности катальпы поглощает 0,07 см3 СО2 за 1 ч, а такая же поверхность раствора щелочи – 0,12–0,15 см3 , или в 2 раза больше.

В процентах указаны траты поглощенной листом световой энергии на различные виды работ

Для процесса фотосинтеза имеют значение особенности строения листа. К верхней стороне листа прилегает палисадная ткань, клетки которой расположены перпендикулярно, плотно соприкасаются друг с другом и богаты хлоропластами. Палисадная паренхима является преимущественно ассимиляционной тканью. К нижнему эпидермису прилегает губчатая паренхима с рыхлорасположенными клетками и межклетниками. Это приспособление у растений имеет значение для лучшего проникновения газов в клетки (рис. 1).

К-во Просмотров: 129
Бесплатно скачать Контрольная работа: Основные клеточные органоиды. Факторы обеспечения нормальной жизнедеятельности растений