Контрольная работа: Особенности решения задач в эконометрике

22,1

34,0

4,1

14,2

12,0

22,1

18,3

28,2

Требуется:

4. Построить поле корреляции и сформулировать гипотезу о форме связи;

5. Построить модели:

2.1 Линейной парной регрессии;

2.2 Полулогарифмической парной регрессии;

2.3 Степенной парной регрессии; Для этого:

1. Рассчитать параметры уравнений;

2. Оценить тесноту связи с помощью коэффициента (индекса) корреляции;

3. Оценить качество модели с помощью коэффициента (индекса) детерминации и средней ошибки аппроксимации;

4. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом;

5. С помощью F -критерия Фишера оценить статистическую надежность результатов регрессионного моделирования;

3. По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии;

4. Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность;

5. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 5% от его среднего уровня. Для уровня значимости =0,05 определить доверительный интервал прогноза.

Решение.

1. Строим поле корреляции.

Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+ b х , или нелинейной вида: у=а+ bln х, у = ах b .

Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+ b х, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a , такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции b х, такие как расход материала, электроэнергии и т.д.

2.1 Модель линейной парной регрессии

2.1.1 Рассчитаем параметры a и b линейной регрессии у=а+ b х .

К-во Просмотров: 946
Бесплатно скачать Контрольная работа: Особенности решения задач в эконометрике