Контрольная работа: Особенности решения задач в эконометрике
22,1
34,0
4,1
14,2
12,0
22,1
18,3
28,2
Требуется:
4. Построить поле корреляции и сформулировать гипотезу о форме связи;
5. Построить модели:
2.1 Линейной парной регрессии;
2.2 Полулогарифмической парной регрессии;
2.3 Степенной парной регрессии; Для этого:
1. Рассчитать параметры уравнений;
2. Оценить тесноту связи с помощью коэффициента (индекса) корреляции;
3. Оценить качество модели с помощью коэффициента (индекса) детерминации и средней ошибки аппроксимации;
4. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом;
5. С помощью F -критерия Фишера оценить статистическую надежность результатов регрессионного моделирования;
3. По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии;
4. Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность;
5. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 5% от его среднего уровня. Для уровня значимости =0,05 определить доверительный интервал прогноза.
Решение.
1. Строим поле корреляции.
Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+ b х , или нелинейной вида: у=а+ bln х, у = ах b .
Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+ b х, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a , такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции b х, такие как расход материала, электроэнергии и т.д.
2.1 Модель линейной парной регрессии
2.1.1 Рассчитаем параметры a и b линейной регрессии у=а+ b х .