Контрольная работа: Разновидности биполярных транзисторов (БТ)
а) изгибы фронта р - п перехода, в которых резко возрастает напряженность электрического поля;
б) рост концентрации примесей с приближением к поверхности, что приводит к уменьшению ширины и соответственно наппяжения пробоя р - п переходов;
в) образование паразитных проводящих каналов в местах выхода переходов на поверхность, которые снижают их электрическую прочность.
Устранение нежелательного действия этих факторов позволяет повысить напряжение пробоя до нескольких сотен или даже тысяч вольт. Это достигается в структурах высоковольтных транзисторов о охранным кольцом и расширенным контактом базы (рис.7,а). При ее создании базовую область создают в два приема. Сначала по контуру будущего КП проводят глубокую диффузию охранного кольца и затем проводят диффузию в центральной области базы. Использование такой двухступенчатой технологии позволяет уменьшить крутизну КП в местах изгиба и уменьшить опасность возникновения в них лавинного пробоя.
Структура транзистора о расширенным базовым контактом показана на рис.7,б. Введение расширенного базового контакта позволяет понизить опасность пробоя коллектора в приповерхноотной области. Базовый контакт в предпробойном режиме находится под большим отрицательным потенциалом по отношению к коллекторной области (р - П -структура). В связи о этим под базовым контактом создаетоя электрическое поле, которое "оттесняет" электроны в глубь кристалла. В результате увеличивается ширина КП и устраняется причина преждевременного пробоя в области выхода его на поверхность кристалла.
ВЧ- и СВЧ-транзисторы. По ширине диапазона рабочих частот БТ подразделяются на следующие группы: низкочастотные - НЧ ( f<3 МГц), среднечастотные СЧ ( f< 30 МГц), высокочастотные ВЧ (f< 300 МГц) и сверхнизкочастотные СЗЧ ( у > 300 МГц) .
ВЧ- и СВЧ-транзиоторы - это транзисторы с дрейфовым механизмом передачи тока и имеющие обычно структуру п - р- п -типа. Особо перспективным материалом для этих групп БТ является GаАs, который отличается особо высокой подвижностью электронов. Поскольку ВЧ- и СВЧ 1-транзисторы должны иметь предельно тонкую базу, пои их эксплуатации нередко возникает явление прокола базы.
Особую сложность представляет производство мощных ВЧ- и СВЧ-транзисторов с большой допустимой мощностью рассеяния, высокой граничной частотой fa малыми емкостями ЭП и КП, малыми постоянными времени цепи CK и rБ. Мощные ВЧ- и СВЧ-транзисторы зачастую изготовляют методами планажно-эпитаксиальной технологии, позволяющей формировать области транзистора сложной формы с высокой точностью. При этом широко используются структуры с гребенчатыми эмиттерами (см.рис.5) и многоэмиттерные БТ (см.рис.6) .
3 СЗЧ диапазоне используются также многоструктурные транзисторы, которые состоят из нескольких многоэмиттерных транзисторов, размещенных на одной полупроводниковой пластине и объединены в единую систему. Отдельные элементы такой структуры размещены достаточно далеко один от другого, так что их тепловые потоки не перекрываются и рассеиваемая мощность возрастает.
В конструкциях корпусов мощных СВЧ-транзисторов предусматривают не только малое тепловое сопротивление, эффективный теплоотвод, но и малые индуктивности выводов, а также малые емкости между выводами и корпусом. 13 случае необходимости корпусу СВЧ-транзистора придают форму, удобную для установки в волноводные тракты.
Мощности СВЧ-транзисторов достигают единиц ватт на частотах в единицы гигагерц.
Транзисторы с повышенным усилением. В простершем варианте усилительный элемент с повышенным усилением может быть получен благодаря использованию составных транзисторов (рис.8). Они могут собираться из элементов с однотипной (рис.8,а) либо взаимодополняющей (комплементарной) структурой. Если b1 и b2, - усиление тока в "одинарных" транзисторах, усиление составной пари bЕ » b1b2 и может достигать величин, превышающих 103...104 . Составные транзисторы могут иметь единое конструктивное оформление.
Очень высокое усиление (b ~ 104 ...105) получают с помощью так называемых бета-транзисторов. Эти транзисторы имеют очень тонкую базу и эмиттерную область, созданную методом ионной имплантации. Последнее обеспечивает повышение эффективности ЭП к уровню g~1
Малошумящие БТ предназначены для построения первых каскадов высокочувствительных усилительных схем. Обычно это маломощные БТ, в паспорте которых нормируется коэффициент шума. В лучших образцах малошумящих БТ коэффициент шума не превышает 3...6 дБ. 3.7.