Контрольная работа: Современное естествознание. Химические процессы. Вулканическая деятельность
Ведь каждая технология характеризуется собственной спецификой, влияющей на качество выпускаемого товара, своей материально-технической базой, воздействием на окружающую среду и т.п., а это означает, что поставленный вопрос сопряжен с решением комплекса задач, включающего и экономические, и социальные, и естественно-научные аспекты. Специалисту, владеющему вопросами современного естествознания вместе с теоретическими знаниями управления экономики, не составит труда решить не только простую задачу (допустим, составить экономически обоснованный бизнес-план), но и любую сколь угодно сложную экономическую задачу.
Первую оценку того или иного предложения настоящий руководитель любого ранга обычно проводит самостоятельно, до того как примет окончательное решение о необходимости прибегнуть к услугам специалистов. Вероятность того, что оценка будет объективной, а решение — единственным и верным, тем выше, чем шире профессиональный кругозор руководителя, что особенно важно для принятия особо ответственных решений, связанных, например, со строительством крупных объектов: мощных электростанций, протяженных магистралей и т.п., затрагивающих интересы колоссального числа людей, а нередко государства в целом либо интересы многих государств. Без владения естественно-научными основами современных технологий получения электроэнергии вряд ли возможно принятие решения о строительстве электростанции, наносящей минимальный экологический ущерб и производящей дешевую энергию. Если руководители и работающие с ними специалисты вынесут решение без учета естественно-научных основ энергетики и экологии, то станет вполне реальным строительство, например, гидроэлектростанций на равнинных реках. Как сейчас всем понятно, подобные сооружения не только нарушают экологический баланс, но и производят не самую дешевую энергию, причем на восстановление разрушенной природной среды потребуются гораздо большие затраты в сравнении с эффектом от работы таких электростанций.
Некомпетентные решения могут привести к строительству атомной электростанции гигантской мощности в том регионе, где нет крупных потребителей энергии и где природные условия позволяют строить электростанции другого типа, например, гелиоэлектростанцию, мощности которой вполне достаточно для местного потребления.
При этом не возникает проблемы передачи электроэнергии на большие расстояния другим потребителям, что влечет за собой неизбежные потери полезной энергии. Кроме того, гелиоэлектростанция мало влияет на окружающую среду. Знания естественно-научных основ энергетики и экологии помогут выбрать оптимальный тип гелиоэлектростанции, которая органически вписывалась бы в живую природу, вырабатывая при этом дешевую энергию.
С проблемами энергетики, экологии вроде бы все понятно — ими должны владеть и инженер, и руководитель, и менеджер, и экономист. А зачем им нужны знания, например, о генной инженерии? Ответ очевиден, если учесть, что без таких знаний невозможно ни вывести высокопродуктивные породы животных, ни внедрить современные передовые технологии в сельскохозяйственное производство.
Практически все руководители в разных отраслях экономики и науки прямо или косвенно участвуют в распределении финансовых ресурсов. Понятно, что только при правильном, рациональном их распределении можно ожидать наибольшего экономического, социального либо другого эффекта. Очевидно также, что оптимальное распределение финансовых ресурсов способны осуществить специалисты высокой квалификации, профессиональный уровень которых зависит не только от их гуманитарных, но и от естественно-научных знаний.
На современном этапе развития науки, и естествознания в том числе, особенно в России и странах бывшего СССР, где наука, как и экономика в целом, переживают глубокий кризис, распределение финансовых ресурсов для обеспечения научных исследований и образования играет важную роль.
При поверхностной, неквалифицированной оценке проблем современной науки выделяемые государством мизерные средства могут расходоваться на проведение исследований ради исследований, на создание многочисленных теорий ради теорий, реальное существование которых сразу прекращается после появления их на свет, на преждевременное строительство крупных экспериментальных установок, требующих колоссальных материальных затрат, и т.п.
При таком подходе нередко заслуживающие внимания экспериментальные исследования, имеющие не только прикладное, но и большое фундаментальное значение, т.е. приносящие реальную пользу, откладываются до лучших времен, что, естественно, тормозит развитие не только науки, но и экономики, сдерживая тем самым рост благосостояния людей. Подобный негативный результат несет в себе недостаточное финансирование системы образования.
Профессиональная целесообразность знаний основ естествознания касается в одинаковой мере и юристов, и специалистов других профилей. В этом несложно убедиться, предположив, что руководитель какого-то крупного предприятия привлечен к ответственности за нарушение экологических норм — выброс в атмосферу больших объемов газовых отходов с повышенной концентрацией серы. А сера, как известно, — источник кислотных осадков, губительно влияющих на растения и приводящих к окислению почвы, что резко снижает урожайность.
Степень наказания виновного будет зависеть от того, насколько объективно и квалифицировано сделана правовая оценка его действий, а сама правовая оценка определяется прежде всего профессиональным кругозором лица, дающего оценку. Наряду с правовыми знаниями юристу необходимо представление о последних достижениях современных технологий, которые позволяют практически исключить выброс многих вредных газов, в том числе и серы, в атмосферу.
Располагая такими знаниями, юрист, несомненно, способен объективно оценить степень нарушения и причастность к нему тех или иных конкретных лиц. Профессионализм юриста и справедливость его решения станут способствовать предупреждению правонарушений в дальнейшем. В этом случае можно считать, что основная цель образования и подготовки специалистов высокой квалификации достигнута. "Великая цель образования, — как сказал известный английский философ и социолог Герберт Спенсер (1820—1903), — это не знания, а действия".
Современная многообразная техника — плод естествознания, которое и по сей день является основной базой для развития многочисленных перспективных направлений — от наноэлектроники до сложнейшей космической техники,й это очевидно для многих. Однако как связать современное естествознание с философией? Философы всех времен опирались на новейшие достижения науки и, в первую очередь, естествознания. Достижения последнего столетия в физике, химии, биологии и в других науках позволили по-новому взглянуть на сложившиеся веками философские представления. Многие философские идеи рождались в недрах естествознания, а естествознание в свою очередь в начале развития носило натурфилософский характер. Про такую философию можно сказать словами немецкого философа Артура Шопенгауэра (1788—1860): "Моя философия не дала мне совершенно никаких доходов, но она избавила меня от очень многих трат".
Знания концепций современного естествознания помогут многим, вне зависимости от их профессии, понять и представить, каких материальных и интеллектуальных затрат стбят современные исследования, позволяющие проникнуть внутрь микромира и освоить внеземное пространство, какой ценой дается высокое качество изображения у современного телевизора, каковы реальные пути совершенствования персональных компьютеров и как чрезвычайно важна проблема сохранения природы, которая, как справедливо заметил римский философ и писатель Сенека (около 4 до н.э. — 65 н.э.), дает достаточно, чтобы удовлетворить потребности человека.
Человек, обладающий хотя бы общими и в то же время концептуальными естественно-научными знаниями, т.е. знаниями о природе, будет производить свои действия непременно так, чтобы польза, как результат его действий, всегда сочеталась с бережным отношением к природе и с ее сохранением не только для нынешнего, но и для грядущих поколений. Только в этом случае каждый из нас сможет осознанно, с благоговением и восторгом повторить замечательные слова русского писателя и историка Николая Карамзина (1766—1826): "Нежная матерь Природа! Слава тебе!".
Известный чешский мыслитель и педагог, один из основателей дидактики Ян Коменский еще в XVII в. написал "Великую дидактику", выступив с лозунгом "обучать всех, всему, всесторонне" и таким образом теоретически обосновав принцип демократизма, энциклопедизма и профессионализма в образовании, в котором скрыты многие ценнейшие плоды будущих "богатых урожаев".
Познание естественно-научной истины делает человека свободным, свободным в широком философском смысле этого слова, свободным от некомпетентных решений и действий и, наконец, свободным в выборе пути своей благородной и созидательной деятельности.
2. Химические соединения и реакциональная способность веществ. Химические процессы и процессы жизнедеятельности
Характер любой системы, как известно, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходилось заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия между элементами химических систем, тем не менее все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между их элементами.
В качестве первичной химической системы рассматривалась при этом молекула и поэтому, когда речь заходила о структуре веществ, то имелась в виду именно структура молекулы как наименьшей единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались, уточнялись и конкретизировались, начиная от весьма общих предположений отвлеченного характера и кончая гипотезами, обоснованными с помощью систематических химических экспериментов. Если, например, по мнению известного шведского химика Йенса Берцелиуса (1779—1848) структура молекулы возникает благодаря взаимодействию разноименно заряженных атомов или атомных групп, то французский химик Шарль Жерар (1816—1856) справедливо указывал на весьма ограниченный характер такого представления. В противовес этому он подчеркивал, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так что в результате возникает определенная целостность или, как мы сказали бы теперь, система. Однако эти общие и в целом правильные представления не содержали практических указаний, как применить их для синтеза новых химических соединений и получения веществ с заранее заданными свойствами.
Такую попытку раскрытия структуры молекул и синтезирования новых веществ предпринял известный немецкий химик Фридрих Кекуле (1829—1896). Он стал связывать структуру с понятием валентности элемента или числа единиц его сродства. На этой основе и возникли те структурные формулы, которыми с определенными модификациями пользуются при изучении органической химии в школе. В этих формулах элементы связывались друг с другом по числу единиц их сродства или валентности. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это составляет важнейшую задачу химической науки.
Дальнейший шаг эволюции понятия химической структуры связан с теорией химического строения Александра Михайловича Бутлерова (1828—1886), который, хотя и признавал, что образование новых молекул из атомов происходит за счет их химического сродства, но обращал особое внимание на степень напряжения или энергии, с которой они связываются друг с другом. Именно поэтому новые идеи А.М. Бутлерова нашли не только широкое применение в практике химического синтеза, но и получили свое обоснование в квантовой механике.
Этот краткий экскурс в историю химии показывает, что эволюция понятия химической структуры осуществлялась в направлении, с одной стороны, анализа ее составных частей или элементов, а с другой — установления характера физико-химического взаимодействия между ними. Последнее особенно важно для ясного понимания структуры с точки зрения системного подхода, где под структурой подразумевают упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные ее свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов определяет свойства молекулы.
Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций.
К условиям протекания химических процессов относятся прежде всего термодинамические факторы, характеризующие зависимость реакции от температуры, давления и некоторых других условий. В еще большей степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей,стенок реактора и иных условий.
Не следует, однако, забывать, что эти условия могут оказывать воздействие на характер и результат химических реакций при определенной структуре молекул химических соединений. Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций. Меньшее влияние оказывают на реакции такие термодинамические факторы, как температура и давление. Для сравнения можно привести реакцию синтеза аммиака из азота и водорода. Вначале его не удавалось получить ни с помощью большого давления, ни высокой температуры, и только использование в качестве катализатора специально обработанного железа впервые привело к успеху. Однако эта реакция сопряжена с большими технологическими трудностями, которые удалось преодолеть после того, когда был использован металлорганический катализатор. В его присутствии синтез аммиака происходит при обычной температуре (18°С) и нормальном атмосферном давлении, что открывает большие перспективы не только для производства удобрений, но в будущем такого изменения генной структуры злаков (ржи и пшеницы), когда они не будут нуждаться в азотных удобрениях. Еще большие возможности и перспективы возникают с использованием катализаторов в других отраслях химической промышленности, в особенности в "тонком" и "тяжелом"органическом синтезе.
Не приводя более примеров о чрезвычайно высокой эффективности катализаторов в ускорении химических реакций, следует обратить особое внимание на то, что возникновение и эволюция жизни на Земле были бы невозможны без существования ферментов, служащих по сути дела живыми катализаторами.
Несмотря на то что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попыт-j ки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения. Речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично — практического применения выделенных ферментов для ускорения некоторых химических реакций.
Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, т. е. на предбиотической стадии эволюции, в настоящее время подтверждается многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши соотечественники Б. П. Белоусов и А. М. Жаботинский. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы.