Контрольная работа: Технологічна спадковість

55

24

100

62

58

29

На рис. 4 зображена діаграма зношування втулок із загартованої сталі 40Х Æ40Н7×40 мм за 10 годин тертя з чавунним валом (СЧ21–40), що обертається зі швидкістю 1 м/с і діє на втулку з тиском 0,32 МПа при змащуванні веретенним маслом. Вона показує, що в деяких випадках цілком однакові за своєю точністю та шорсткістю поверхні деталей машин виготовлені за одним і тим же кресленням, а також прийняті і оцінені технологічним контролем як цілком рівноцінні, можуть мати різні експлуатаційні якості в залежності від технологічної спадковості, набутій деталями в процесі їх виготовлення. З діаграми видно, що зношування втулок, оброблених шліфуванням, з Rz = 0,8 мкм при терті з суперфінішованим валом виявилося найменшим. Зношування втулок з тією ж шорсткістю, оброблених хонінгуванням, виявилося на 30% більшим, а оброблених викінчуванням вільним абразивом – майже в три рази більшим, чим після обробки шліфуванням.

При терті з’єднань деталей, оброблених з Rz = 0,4 мкм, найбільше зношування знову – мають отвори, що викінчувані вільним абразивом, а найбільш зносостійкими виявляються хонінговані отвори при їх обробці з Rz = 0,2 мкм.


Рис. 4. Зношування втулок із загартованої сталі, оброблених шліфуванням (1), доведенням вільним абразивом (2) і хонінгуванням (3)

Втомлена міцність деталей машин суттєво залежить від видів і режимів обробки.

Зміна режимів фрезерування сталі 2Х13 циліндричними фрезами призводить до збільшення межі втомленості з 314 до 378 МПа, тобто на 18% (рис. 5). При цьому перехід від методу попутного (П) фрезерування до зустрічного (В) з незмінними режимами фрезерування підвищує межу втомленої міцності на 8–10%.

Рис. 5. Залежність межі витривалості сталі 2Х13 від режимів фрезерування : 1 – при V = 60 , Sz = 0,05 мм/зуб ; 2 – при V= 60 м/хв , Sz = 0,16 мм/зуб ; 3 – при V= 38 м/хв , Sz = 0,05 мм/зуб ; 4 – при V= 19 м/хв , Sz = 0,12 мм/зуб

Криві, зображені на рис. 6, а , показують, що при точінні високоміцної сталі за допомогою зміни геометрії різця, зокрема, шляхом зміни його переднього кута, втомлену міцність можна підвищити на 36–63%.

Збільшення швидкості різання при точінні високоміцної сталі, що сприймає загартування, веде до підвищення втомленої міцності на 12–30% (рис. 6, б ).

Збільшення подачі при точінні сталі 50 у зв’язку з її зміцненням при зростанні навантаження підвищує втомлену міцність, а при точінні загартованої сталі 30ХГСНА у зв’язку з її відпущенням знижує втомлену міцність (рис. 6, в ).

Наведені результати різних експериментальних досліджень переконують у можливості встановлення залежностей довговічності деталей від видів і режимів їх обробки і визначення видів обробки, найбільш сприятливих для підвищення довговічності деталей машин, але необхідно підкреслити, що при встановленні таких залежностей треба дуже ретельно вивчати фізичну сутність явища і границі дії якихось закономірностей.

Рис. 6. Вплив геометрії різця при V = 100 S = 0,1 ), швидкість різання при γ = –50° ; S = 0,1 мм/об та подачі (в) на межу витривалості сталі: 1 – сталь 30ХГСНА ; 2 – сталь 30ХГСА ; 3 – сталь 50


Використана література

спадковість технологічний деталь обробка

1. Бондаренко С.Г. Розмірні розрахунки механоскладального виробництва.– К. 1993. – 544 с.

2. Маталин А.А. Технология машиностроения.– Л. – М., 1985. – 496 с.

3 Основы технологии машиностроения / Под ред. В.С. Корсакова – М., 1977. – 416 с.

4. Справочник технолога-машиностроителя / Под. ред. А.Г. Косиловой, О.К Мищерякова. Т. 1. – М. 1985. – 655 с.

5. Руденко П.А., Шуба В.А и др. Отделочные операции в машиностроении. – К.: Техника, 1990. – 150 с.

К-во Просмотров: 128
Бесплатно скачать Контрольная работа: Технологічна спадковість