Контрольная работа: Водные ресурсы Земли
Методы определения характеристик потоков различны в зависимости от того, какая характеристика определяется. Так, уровни и уклоны определяют прямым или дистанционным наблюдением на водомерных постах, скорости течения – специальными приборами (вертушками) или поплавками различной конструкции, траектории движения потока – также наблюдением за поплавками, льдинами или другими плывущими в потоке предметами. Наблюдение может вестись с помощью геодезических приборов.
Глубины потока находят погружением лотов в воду в различных точках русла, или с использованием акустической аппаратуры (эхолотов). Прочие геометрические характеристики получают прямым измерением с помощью геодезического инструмента.
Для определения расхода используют аналитический или графический методы, определив предварительно скорости и глубины на вертикалях в расчетном створе. Скорость течения воды измеряют вертушками со штанги, если глубина менее 3 м или при помощи троса с грузом.
1.4 Описать движения наносов и русловые процессы
Речными наносами называют твердые минеральные частицы вне зависимости от размера, переносимые потоком воды и образующие при определённых условиях отложения. Интенсивность образования, переноса и отложения наносов зависит от энергии текущей воды и характера слагающих русло пород. При этом чаще всего размыв наблюдается в верхнем течении рек, а отложение (аккумуляция) – в нижнем течении.
Наносы можно разделить по характеру их перемещения и отложения на донные и взвешенные. Донные наносы – это наиболее крупные частицы, которые перемещаются без отрыва от дна (влекомые) или с отрывом на короткое время (полувзвешенные). Такие наносы являются рельефообразующими и в значительной степени формируют русло потока.
Взвешенные наносы – совокупность наиболее мелких частиц грунта, долгое время находящихся во взвешенном состоянии и перемещающихся со скоростью, близкой к скорости течения. Наибольшая концентрация этих частиц наблюдается в придонном слое. Степень насыщения воды частицами наносов определяется мутностью воды, кг/м3 (концентрацией). Этот показатель зависит от энергии потока и значительно изменяется как по длине реки, так и по ширине и по вертикали.
Зная распределение мутности воды и скорости потока в каком-либо створе, можно определить расход наносов, то есть количество наносов, переносимое потоков в единицу времени; а также транспортирующую способность потока – количество переносимых наносов определённого зернового состава без деформаций дна. Таким образом, транспортирующая способность потока равна максимальному расходу наносов, при котором их осаждение и взвешивание уравновешены, а средняя мутность потока постоянна.
При сравнительно крупных размерах частиц и значительной скорости потока начинается массовое перемещение наносов по дну, при этом образуются так называемые микроформы – несимметричные образования, похожие на рябь на поверхности воды. Они могут быть с короткими криволинейными гребнями (рифели) или с длинными прямыми (плоские гряды). Их образование обусловлено появлением вихревых зон в потоке за случайными неровностями дна, которые вызывают разрежение и появление подъемной силы на поверхности дна. Частицы грунта дна поднимаются и образуют микрогребень, что вызывает дальнейший рост подъёмной силы и развитие неровности, некоторые взвешенные частицы переносятся ниже первичного рифеля и образуют новую неровность. Процесс можно отчётливо наблюдать на песчаной отмели при небольших скоростях течения. При увеличении скорости размеры рифелей растут, вихревые зоны увеличиваются и начинается массовое взвешивание частиц, что приводит к образованию плоских гряд.
При интенсивном развитии гряд образуются мезоформы – неровности, по размерам сравнимые с размерами русла и могущие занимать как его часть, так и всё русло целиком. При падении уровня воды такие отложения могут образовывать полузатопленные или затопленные острова (осерёдки), мели, косы-побочни и т.д. При больших расходах и скоростях течения длины гряд могут достигать порядка ширины русла, а расстояния между ними – нескольких километров.
При бурном потоке со значительной турбулентностью могут формироваться крупные симметричные синусоидальные структуры, находящиеся в фазе с волнами на поверхности потока. При этом частицы с «подветренного» склона вышележащей гряды переносятся на «наветренный» склон нижележащей, и гребни гряд «ползут» вверх по течению. Такие формы называют антидюнами.
Совокупность всех процессов взаимодействия потока и русла называют русловым процессом. В это понятие входит образование и переформирование русла, движение наносов с образованием зон размывов и аккумуляции, смещение русла под действием потока и изменение характеристик потока под действием русла. При любых видах строительства на реках следует тщательно изучить русловой процесс в естественных условиях чтобы избежать нежелательных последствий строительства и предусмотреть мероприятия по их снижению в проектных решениях.
С помощью разработанной в первой половине ХХ века гидроморфологической теории русловых процессов все эти процессы были разделены на несколько типов, и рассмотрена взаимосвязь между ними, а также последствия, к которым приводит то или иное развитие процесса. Для практического применения выведена методика расчёта русловых деформаций, которые будут наблюдаться при том или ином изменении руслоформирующих факторов или режима течения.
1.5 Описать методы инженерных гидрометрических изысканий на водотоках
Гидрометрические инженерные изыскания на водотоках выполняются с целью определения основных гидравлических параметров – скоростей течения, уклонов, шероховатостей, зависимости уровней воды от расходов; площадей, глубин и ширин русла и пойм в зависимости от уровней воды; траекторий движения льдин, струй, судов и караванов. Эти сведения представляют практическую ценность при проектировании переправ через водотоки, организации водного транспорта, проектировании гидротехнических сооружений, планировании водоснабжения и проч. Обычно гидрометрические наблюдения на водотоках и водоёмах совмещают с метеорологическими наблюдениями.
В состав экспедиционных гидрометрических работ входят наблюдения за колебаниями уровней воды, выбор и подготовка гидрометрического створа, измерение уклонов водной поверхности, глубин, скоростей и расходов; наблюдения за направлением движения струй потока и предметов, находящихся в воде. В зависимости от того, какие данные необходимо получить, могут использоваться различные методы изысканий и наблюдений.
Широко распространён такой метод, как измерение уровней. Оборудованное для этих работ место называют водомерным постом. В связи с большой продолжительностью исследований условную плоскость, от которой начинают отсчёт, располагают ниже возможного наинизшего уровня воды, чтобы отсчёты всегда были положительными. Эта плоскость называется нулём графика водомерного поста. Отсчёт снимают дважды в сутки на реках и четырежды в сутки – на морях (в периоды паводков и половодий, а также сгонных и нагонных явлений на море – чаще).
Водомерные посты могут быть постоянными и временными. По конструкции посты подразделяют на простые (реечные, свайные) и передаточные (автоматизированные, неавтоматизированные, с самописцами, с дистанционным управлением и т.п.). Любой водомерный пост оборудуется основными и контрольными реперами, устраиваемыми вне зоны затопления и позволяющими проверять высотное положение измерительных устройств.
Иногда измерительное устройство устанавливают в специальном котловане, соединённом с водоёмом или рекой каналом – для защиты от набегания волн, искажающих показания. Для этой же цели поплавки самописцев размещают в колодце или трубе, соединённых с морем и исключающих воздействие волнового колебания уровня.
Очень часто водомерные посты обустраивают на существующих гидротехнических или транспортных сооружениях – мостах, плотинах, водозаборных станциях, причалах и т.д.
Для определения уклона свободной поверхности воды в реках используют метод устройства выше и ниже основного поста дополнительных, так называемых уклонных постов, расстояние между которыми может составлять 100…8000 метров (в зависимости от требуемой точности измерений) и отсчитывается по линии наибольших глубин. По разности уровней в верхнем и нижнем створах определяется уклон.
По результатам наблюдений на постах составляются таблицы и строятся графики изменения уровней во времени, а также вычисляют различные специфические показатели (кривые повторяемости и обеспеченности, модальный и медианный уровни, высший и низший годовые уровни, уровни ледостава и вскрытия ледяного покрова и т.д.).
Для определения глубин и рельефа дна водных объектов используют метод промеров. По результатам промерных работ составляют планы для водного объекта в изолиниях или изобатах, определяют площади поперечного сечения реки или водоёма и (в последнем случае) рассчитывают объём воды. Также такие работы ведут для нужд судоходства, при проектировании и эксплуатации гидротехнических сооружений, при исправлении береговых линий и защите от водной эрозии.
Измерения глубин проводят в отдельных точках или же непрерывно по профилю дна. Точки промера глубины обычно располагают в выбранном створе; плановое положение привязывают к геодезической сети. Измерения, как правило, производят на больших площадях или протяжённых участках реки, из-за чего сроки таких работ могут быть значительными. Чтобы учесть влияние изменения уровня воды во времени, результаты приводятся к единому мгновенному (так называемому условному) уровню, за который принимают наинизший уровень за период производства промерных работ (для рек) или наинизший теоретически возможный для морей.
Способ измерения глубины может быть механический или акустический. Для первого используются намётки, ручные или механические лоты; поправка к измерениям рассчитывается с помощью угломера – прибора для определения угла наклона троса к поверхности воды; акустические способы основаны на явлении отражения ультразвуковых импульсов от дна реки или водоёма. По разности времени между подачей импульса и приёмом отражённого сигнала рассчитывается глубина; при этом предварительно следует определить температуру и солёность воды для расчёта поправок.
Промерные работы могут вестись по поперечникам, продольникам или «косым галсам» на так называемых промерных вертикалях. Координирование выполняется с помощью геодезического инструмента с берега; либо засечками с судна ориентиров на берегу.
Измерения скоростей течения воды могут выполняться различными способами и приборами. В целом способы измерения течений можно разделить на поплавочные, при которых наблюдение ведут за плавающими на воде предметами (поплавками) и вертушечные, когда скорость определяют в фиксированной точке по давлению потока воды на лопастные винты приборов.
Поплавочные способы дают пространственную картину течений в виде линий тока – траекторий движения поплавков. Вертушечный способ позволяет определить направление и значение вектора скорости в конкретной точке.
Широкое распространение получили свободно плавающие поплавки, подразделяемые на поверхностные и глубинные. Для лучшей видимости на них закрепляются влажки, а внизу крепится на тросе груз для снижения влияния ветра и большей устойчивости. Глубинные поплавки состоят из двух соединённых тросом частей и применяются для определения скорости на заданной глубине.