Контрольная работа: Высокомолекулярные соединения

При нагревании аморфного полимера наблюдают три физических состояния: стеклообразное, высокоэластичное и вязкотекучее. Эти состояния устанавливают на основании кривой термомеханического состояния. Аморфный полимер находится ниже температуры стеклования (Тс) в твердом агрегатном состоянии. При температуре выше Тс полимер находится в высокоэластичном состоянии; молекулярная подвижность при этом становится настолько большой, что структура в ближнем порядке успевает перестраиваться вслед за изменением температуры, а макромолекулы могут изгибаться под действием внешних сил. Общая деформация складывается в этом случае из упругой и запаздывающей высокоэластичной деформации. При упругой деформации изменяются средние межцентровые, межмолекулярные расстояния и валентные углы в полимерной цепи, при высокоэластичной деформации изменяется ориентация и перемещаются на значительные расстояния звенья гибких цепей.

Кристаллизующийся полимер в зависимости от скорости охлаждения расплава полимера может проявлять два вида структур: аморфную и кристаллическую. При медленном охлаждении кристаллизующихся полимеров совместная укладка отрезков макромолекул образует структуру макромолекул. Это затрудняет переход их из одной конформации в другую, из-за чего отсутствует гибкость макромолекул и нет высокоэластичного состояния. При быстром охлаждении кристаллические структуры не успевают полностью сформировываться, поэтому в переохлажденном полимере между ними имеется "замороженная" – аморфная структура. Эта аморфная структура при повторном нагреве до температуры выше температуры плавления (Тпл) создает вязкотекучее состояние. Для структуры полимера характерны два состояния: кристаллическое (до температуры плавления) и вязкотекучее (выше температуры плавления).

Вязкотекучее состояние, характерное для аморфного и кристаллического состояния полимера, в основном, обеспечивает при течении полимера необходимые деформации путем последовательного движения сегментов. Вязкость полимера увеличивается с увеличением молекулярной массы полимера, увеличивается также при этом и давление формования изделий. /2, c. 135/

Таким образом, высокомолекулярные вещества могут находиться в трех состояниях: стеклообразном, высокоэластичном и вязкотекучем, соответственно разделенных температурами Тс и Тт. Эти состояния могут изменятся в зависимости от температуры, состава среды, условий межцепного взаимодействия.


4. Концентрированные растворы ВМС. Основные свойства и применение

Растворы ВМС - являются истинными растворами, а это значит, что они представляют собой гомогенные системы, в которых взвешенные частицы не содержат ядер. Здесь, взвешенные частицы представлены макромолекулами – молекулами гигантских размеров. Таким образом, макромолекулы являются ответственными за большинство физических свойств растворов ВМС, которые сильно отличаются от свойств низкомолекулярных соединений. Строение микромолекул, в свою очередь, также оказывает сильное влияние на поведение растворов ВМС.

Одной из главных особенностей ВМС является, так называемый процесс денатурации - специфическое необратимое осаждение белков. Он происходит при действии высоконцентрированных кислот и щелочей, дубильных веществ, под влиянием высокой и низкой температур, механического воздействия высокого давления, ультразвука, лучистой энергии.

К основным высокомолекулярным соединениям относятся белки, целлюлоза, нитроцеллюлоза, каучук, желатин и др.

Растворы ВМС - всегда термодинамически устойчивые системы, способные существовать без стабилизатора неограниченное время в весьма больших массовых и значительных молярных концентрациях. Они образуются самопроизвольно, с уменьшением свободной энергии.

Если в качестве диспрессионной среды использовать такую жидкость, по отношению к которой данное высокомолекулярное вещество явл. лиофобным (не способным в нем раствориться), ВМС способны образовывать не только растворы, но и типичные лиофобные золи.

В то же время растворы ВМС представляют собой равновесные системы, к которым применимо правило фаз, в отличие от лиофобных коллоидов.

Растворы ВМС, так же, как растворы низкомолекулярных соединений, могут быть как молекулярными, так и ионными.

В ионных растворах ВМС природа зарядов связана с наличием функциональных групп.

Повышенная вязкость растворов ВМС связана с формой макромолекул и характером межмолекулярных взаимодействий и объясняется большой сольватацией макромолекул. Вязкость растворов высокомолекулярных соединений, обычно выше вязкости растворов низкомолекулярных соединений и коллойдных растворов, взятых с одинаковой концентрацией.

При исследовании растворов ВМС характеристическую вязкость обозначают через [h].

Причиной отклонения вязкости растворов ВМС является взаимодействие вытянутых и гибких макромолекул, часто образующих структированные системы. Такие системы получили название ассоциаты.

Ассоциаты обладают свойством сильно увеличивать вязкость растворов.

Явление светорассеяния и спектры поглощения ВМС

В исследовании твердых полимеров важную роль играют инфокрасные спекторы поглощения ВМС. К сожалению они очень сложны для использования при исследовании самих растворов ВМС.

Кроме того растворы ВМС характеризуются светорассеянием.

Это свойство, изменение величины рассеяния света, чрезвычайно полезно для различных научных исследований. В частности, используется в методе определения относительной массы полимеров, т.к. цепные молекулы полимеров нельзя обнаружить в растворах при ультрамикроскопических наблюдениях. Метод основан на измерении мутности разбавленных растворов ВМС.

Появление на поверхности молекул заряда, является одной из важных проблем, возникающих при изучении ВМС. Возникновение заряда объясняется рядом причин.

Например, поверхность ВМС может иметь собственный заряд, возникающий благодаря расположенным на ней анионным и катионным группам.

Наличие заряда у крупных частиц, может служить отличием ВМС от низкомолекулярных соединений.

При электрофорезе заряженная частица, присутствующая в растворе, в частности микромолекула, под действием электрических сил движется к электроду противоположного знака. Это свойство часто используют, когда необходимы доказательства наличия заряда у частицы ВМС.

Для белков между зарядом молекул и электрофоретической подвижностью существует прямая пропорциональная зависимость в широком интервале рН.

Изоэлектрической точкой – называют значение рН, при котором лектрофоретическая подвижность белка равна нулю. При значении рН, близком к изоэлектрической точки, разноименно заряженное группы -NH3+ и COO- притягиваются друг к другу и нить закручивается в спираль. Тогда раствор имеет наименьшую вязкость. Молекулы ВМС в развернутом состоянии придают растворам более высокую вязкость.

Если молекула белка ведет себя как основание, приобретает положительный заряд и при электрофорезе движется к катоду, то эта среда – кислая ( когда в результате избытка водородных ионов подавлена ионизация карбоксильных групп). Если же молекула белка ведет себя как кислота и при электрофорезе передвигается к аноду - среда щелочная (подавлена ионизация аминогрупп).

В изоэлектрическом состоянии свойства растворов белков резко меняется: при этом они имеют, наименьшую вязкость, плохую растворимость.

К-во Просмотров: 344
Бесплатно скачать Контрольная работа: Высокомолекулярные соединения