Курсовая работа: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине
С учетом равенства (7) решение (6) запишем в виде
(8)
Разрешая уравнение (8) относительно функции сопротивления и учитывая уравнение (2), находим
(9)
и на основании равенства (7) приведем выражение (9) к виду
(10)
Численное значение R(rс ,h,fo) рассчитано по уравнению (10) на ЭВМ в широком диапазоне изменения параметров rc , h, f0 . Интеграл (2) вычислялся методом Гаусса, оценка его сходимости выполнена согласно работе [3]. С учетом равенства (7) вычисления дополнительно проконтролированы по значениям интегрально-показательной функции.
С целью выяснения поведения депрессии и функции сопротивления проанализируем их зависимость от значений безразмерных параметров.
1. Определим поведение Dр в зависимости от значений параметров rс , h, f0 .
Результаты расчетов значений депрессии для каждого фиксированного rc сведены в таблицы, каждая из которых представляет собой матрицу размером 10х15. Элементы матрицы это значения депрессии Dp(rc ) для фиксированных h и f0 . Матрица построена таким образом, что каждый ее столбец есть численное значение депрессии в зависимости от h, .а каждая строка соответствует численному значению депрессии в зависимости от fo (табл. 1). Таким образом, осуществлен переход от значений безразмерной депрессии Dp(rc , h, f0 ) к относительной депрессии
Dр*i,j (rc ).
Для удобства построения и иллюстрации графических зависимостей выполнена нормировка матрицы. С этой целью каждый элемент i-й строки матрицы поделен на максимальное значение депрессии в данной строке, что соответствует значению j==15. Тогда элементы новой матрицы определятся выражением
(11)
Условимся элементы матрицы называть значениями относительной депрессии. На рис. 1 приведен график изменения относительной депрессии при фиксированных значениях h. Характер поведения относительной депрессии позволяет описать графики уравнением пучка прямых
![]() |

Рис. 1. Поведение относительной депрессии (rc =0,0200, hi =const, f0 ) при значениях h, равных: 1— 0,1; 2 — 0,3; 3—0,5;4 — 0.7; 5 —0,9; 6—1,0.
где ki — угловой коэффициент прямой, который определяется h и от индекса j не зависит.
Анализ зависимости поведения депрессии Dp* i,j от f0 для всех rc >0,01 показывает, что графики этой зависимости можно описать уравнением пучка прямых для любого значения h. Для rc < 0,01 в графиках зависимости появляются начальные нелинейные участки, переходящие при дальнейшем уменьшении параметра f0 (или же при увеличении его обратной величины 1/foj ) в прямые для всех значений h<l,0
(рис. 2). При h=l,0 поведение депрессии строго линейно. Кроме того, протяженность нелинейного участка для разных rc при h=const различна. И чем меньше значение безразмерного радиуса rc , тем больше протяженность нелинейного участка (рис. 2).
2. Определим поведение R(rc , h, f0 ) и ее зависимость от безразмерных параметров rc , h, f0 .
Значения R(rc , h, f0 ) рассчитаны для тех же величин параметров rc , h, f0 . которые указаны в пункте 1, обработка результатов также аналогична. Переход от безразмерной функции сопротивления R(rc , h, f0 ) к относительной R* i,j (rc ) осуществлен согласно выражению
.(13)
Анализ поведения R* i,j (rc ) и результаты обработки расчетного материала, где установлена ее зависимость от параметров rc , h, f0 , частично приведены на рис, 2 (кривые даны пунктиром).
При гc >0,01 для любого hi R* i,j (rc ) уже не зависит от f0i .
Из анализа данных расчета и графиков рис. 2 следует: при rc <0,01 в поведении R* i,j (rc ) для всех h<l,0 наблюдается нелинейный участок, переходящий с некоторого значения f0 (точка С на графике) в прямую линию, параллельную оси абсцисс. Важно отметить,
что для одного и того же значения rc абсцисса точки перехода нелинейного участка в линейный для R* i,j (rc ) имеет то же самое значение, что и абсцисса точек перехода для графиков зависимостиDp* i,j (rc ) от ln(l/f0i ) (линия CD). Начиная с этого момента, R* i,j (rc ) для данного rc при дальнейшем наблюдении зависит не от времени, а только от hi • И чем выше степень вскрытия, т. е. чем совершеннее скважина,. тем меньше будет значение R* i,j (rc ) И при h=l (скважина совершенная по степени вскрытия) функция сопротивления равна нулю. Очевидно, нелинейностьDp* i,j (rc ) связана с характером поведения функции сопротивления, которая, в свою очередь, зависит от параметра Фурье. Отметим также, что в точке С (рис. 2) численное значение функции сопротивления становится равным значению фильтрационных сопротивлений (C1 (rc , h)) для притока установившегося режима.
Рис. 2. Поведение относительной депрессии и относительной функции фильтрационного сопротивления (rc =0,0014, h=const, f0 ) при h, равных: 1,1'—0,1; 2,2'— 0,3; 3,3'—0,5; 4,4'—0,7; 5,5'— 0,9;6,6'— 1,0.
выводы
1. Депрессия на забое несовершенной по степени вскрытия скважины для всех rc < 0,01 имеет два явно выраженных закона изменения: а) нелинейный, который обусловлен зависимостью функции сопротивления от времени и соответствует неустановившемуся притоку сжимаемой жидкости (газа); б) линейный, который соответствует квазиустановившемуся притоку и не связан с функцией сопротивления.