Курсовая работа: Анализ линейной цепи постоянного тока, трехфазных цепей переменного тока
Для записи второго закона Кирхгофа произвольно выбирают направление обхода контура. При записи левой части равенства со знаком "+" берутся падения напряжения на тех резисторах, в которых выбранное положительное направление тока совпадает с направлением обхода (независимо от направления ЭДС в этих ветвях), а со знаком "-" берутся падения напряжения на тех резисторах, в которых положительное направление тока противоположно направлению обхода. При записи правой части равенства, положительными принимаются ЭДС, направления которых совпадают с выбранным направлением обхода контура (независимо от направления тока, протекающего через них), и отрицательными, когда направление ЭДС не совпадают с выбранным направления обхода контура. Законы Кирхгофа должны выполняться для любого момента времени. Для внешнего контура электрической цепи, рис.1.1, при его обходе от точки а по часовой стрелке, второй закон Кирхгофа примет вид:
2. Линейные электрические цепи синусоидального тока
2.1 Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов
Электрической цепью переменного тока принято называть совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий ЭДС, тока и напряжения. Причем эти понятия являются функциями времени. ЭДС е, ток i и напряжение и задаются мгновенными значениями, т.е. значениями в дискретный момент времени, и описываются изменяющимися во времени функциями.
Линейная цепь переменного тока состоит из пассивных линейных элементов с параметрами: R - сопротивление; L - индуктивность; С - емкость. В установившемся режиме под воздействием переменных ЭДС в цепях возникают переменные токи. Среди этих воздействий важнейшую роль играют гармонические колебания. При воздействии переменной во времени ЭДС в линейных электрических цепях возникают физические процессы, изменяющиеся по гармоническим законам.
Наибольшее распространение получили электрические цепи с синусоидальным изменением тока (напряжения ЭДС). Аналитическое выражение тока
(2.1)
График синусоидальной функции времени для этого тока приведен на рис.2.1 Синусоидальное колебание i{ t) характеризуется следующими основными параметрами: амплитудой /„, угловой (круговой) частотой ω, начальной фазой ψ i .
Наименьший промежуток времени, по истечении которого значения функции i ( t) повторяются, называется периодом Т. Между периодом и круговой частотой существует простая связь: Т = 2π / ω. Величину, обратную периоду, называют циклической частотой: f = 1/Т. Из выше изложенного следует, что ω = 2π f . Единицей измерения частоты f является герц (Гц), угловой частоты - радиан в секунду (рад/с). Для питания различных электроэнергетических установок в России принята промышленная частота f =50 Гц, тогда угловая частота
.
В выражении (2.1) в скобках при функции синуса - фаза синусоидального электрического тока (фаза тока), т.е. аргумент синусоидального тока, отсчитываемый от точки перехода тока через нуль к положительному значению. В этой формулировке заключен смысл начала отсчета времени. При - начальная фаза синусоидального электрического тока или значение фазы синусоидального тока в начальный момент времени. На оси времени t удобнее откладывать время в специальных единицах .
Аналогичный вид имеют выражения для синусоидального напряжения и и ЭДС е:
Важными параметрами гармонических колебаний являются их действующие и средние значения. Действующим значением синусоидального тока называется такое значение постоянного тока, при прохождении которого в одном и том же резисторе с сопротивлением R за время одного периода Т выделяется столько же теплоты Qn ост., сколько и при прохождении синусоидального тока Qпе p , . Зная, что и приравняв их можно показать, что действующее значение тока равно:
.
Аналогично вводят действующие значения напряжения и ЭДС . Важно знать, что в паспорте электротехнических устройств синусоидального тока указаны действующие значения напряжений U и токов /, большинство измерительных приборов проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений.
Среднее значение тока i определяется за половину периода Т/2 ( за полный период оно равно нулю): . Аналогично определяется
.
3. Трехфазные цепи
3.1 Трехфазные симметричные источники и электроприемники
Основные определения.
Многофазной системой электрических цепей называется совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, создаваемые общим источником энергии и сдвинутые относительно друг друга по фазе. Как ранее отмечалось, термин фаза обозначал стадию синусоидального процесса. Введем ее второе понятие: фаза многофазной системы - часть многофазной электрической цепи, в которой может протекать один из токов многофазной системы. По числу фаз многофазные системы электрических цепей подразделяются на двух-, трех-,..., т - фазныесистемы. Наибольшее распространение получили трехфазные (т = 3) и кратные трем (т = 6, т = 12) системы.
Трехфазная система электрических цепей, в которой отдельные фазы электрически соединены друг с другом называется трехфазной цепью. Такие цепи составляют основу электроэнергетики.
Достоинствами трехфазной системы, обусловившими ее исключительно широкое применение в системах электроснабжения, являются:
1) использование, при передаче заданной мощности, меньшего числа проводов, чем в несвязанных однофазных системах;
2) наличие двух уровней напряжения - фазного и линейного, что позволяет питать различные нагрузки без применения трансформаторов;
3) сравнительная легкость создания вращающегося магнитного поля, необходимого для работы трехфазных электрических машин.
Симметричные источники. Преобладающая часть мощных генераторов и приемников электрической энергии вырабатывают и потребляют трехфазные синусоидальные токи. В обмотках статора трехфазного генератора - фазах А, В, С - генерируется три ЭДС одинаковой частоты и амплитуды, имеющие фазовый сдвиг 120° (или 2π/3). Такая система ЭДС называется симметричной (рис.3.1, а). Комплексные изображения ЭДС подобной трехфазной системы имеют вид:
.
Наиболее характерное свойство такой системы - сумма фазных ЭДС равна нулю, т.е.
.