Курсовая работа: Enrico Fermi and his discovery
In 1944, Fermi became American citizen, and at the end of the war (1946) he accepted a professorship at the Institute for Nuclear Studies of the University of Chicago, a position which he held until his untimely death in 1954. There he turned his attention to high-energy physics, and led investigations into the pion-nucleon interaction.
During the last years of his life Fermi occupied himself with the problem of the mysterious origin of cosmic rays, thereby developing a theory, according to which a universal magnetic field - acting as a giant accelerator - would account for the fantastic energies present in the cosmic ray particles.
Professor Fermi was the author of numerous papers both in theoretical and experimental physics. Several papers published in Rend. Accad. Naz. Lincei, 1927-28, deal with the statistical model of the atom (Thomas-Fermi atom model) and give a semiquantitative method for the calculation of atomic properties. 1934.
The Nobel Prize for Physics was awarded to Fermi for his work on the artificial radioactivity produced by neutrons, and for nuclear reactions brought about by slow neutrons. The first paper on this subject was published by him in 1934. Fermi was member of several academies and learned societies in Italy and abroad. As lecturer he was always in great demand (he has also given several courses at the University of Michigan and Stanford University, Calif.). He was the first recipient of a special award of $50,000 - which now bears his name - for work on the atom.
Post-War Work
Fermi was widely regarded as the only physicist of the twentieth century who excelled both theoretically and experimentally. The well-known historian of physics, C. P. Snow, says about him, "If Fermi had been born a few years earlier, one could well imagine him discovering Rutherford's atomic nucleus, and then developing Bohr's theory of the hydrogen atom. Fermi's ability and success stemmed as much from his appraisal of the art of the possible, as from his innate skill and intelligence. He disliked complicated theories, and while he had great mathematical ability, he would never use it when the job could be done much more simply. He was famous for getting quick and accurate answers to problems which would stump other people. An instance of this was seen during the first atomic bomb test in New Mexico on July 16, 1945. He estimated that the blast was greater than 10 kilotons of TNT.Later on, this method of getting approximate and quick answers through back of the envelope calculations became informally known as the 'Fermi method'.
After the war, Fermi served for a short time on the General Advisory Committee of the Atomic Energy Commission, a scientific committee chaired by Robert Oppenheimer. After the detonation of the first Soviet fission bomb in August 1949, he, along with Isidor Rabi, wrote a strongly worded report for the committee which opposed the development of a hydrogen bomb on moral and technical grounds. But Fermi also participated in preliminary work on the hydrogen bomb at Los Alamos as a consultant, and along with Stanislaw Ulam, calculated that the amount of tritium needed for Edward Teller's model of a thermonuclear weapon would be prohibitive.
In his later years, Fermi did important work in particle physics, especially related to pions and muons. He was also known to be an inspiring teacher at the University of Chicago, and was known for his attention to detail, simplicity, and careful preparation for a lecture. On November 28, 1954, Fermi died at the age of 53 of stomach cancer in Chicago, Illinois and was interred there in Oak Woods Cemetery. As Eugene Wigner wrote: "Ten days before Fermi had died he told me, 'I hope it won't take long".
A recent poll by Time magazine listed Fermi among the top twenty scientists of the century.
The Fermilab particle accelerator and physics lab in Batavia, Illinois, is named after him in loving memory from the physics community.
Fermi 1 & Fermi 2 nuclear power plants in Newport, Michigan are also named after him.
In 1952, element 100 on the periodic table of elements was isolated from the debris of a nuclear test. In honor of Fermi's contributions to the scientific community, it was named fermium after him.
Personal life
In 1928, Fermi married Laura Capon and later had a son Giulio Fermi (1936-1997) and a daughter Nella Fermi Weiner (1931-1995). His son later worked with the Nobel laureate Max Perutz on the structure of hemoglobin.
Chapter 2. Fermi's golden rule
In quantum physics, Fermi's golden rule is a way to calculate the transition rate (probability of transition per unit time) from one energy eigenstate of a quantum system into a continuum of energy eigenstates, due to a perturbation.
We consider the system to begin in an eigenstate of a given Hamiltonian H0 . We consider the effect of a perturbing Hamiltonian H'. If H' is time-independent, the system goes only into those states in the continuum that have the same energy as the initial state. If H' is oscillating as a function of time with an angular frequency , the transition is into states with energy that differs by from the energy of the initial state. In both cases, the one-to-many transition probability per unit of time from the state to a set of final states is given, to first order in the perturbation, by:
where ρ is the density of final states, and < f | H' | i > is the matrix element of the perturbation, H', between the final and initial states.
Fermi's golden rule is valid when the initial state has not been significantly depleted by scattering into the final states.
The most common way to derive the equation is to start with time-dependent perturbation theory and to take the limit for absorption under the assumption that the time of the measurement is much larger than the time needed for the transition.
Although named after Fermi, most of the work leading to the Golden Rule was done by Dirac who formulated an almost identical equation, including the three components of a constant, the matrix element of the perturbation and an energy difference.
Chapter 3. Discovery of fermium.
Facts:
Atomic Mass 257.1
Protons/Electrons 100
Nuetrons 157
Type Solid
Class Transitional metal
Group Actinide
Melting Temp. 2781
Oxidation State: | +3 |
Electron Shell Configuration: |
|
History: