Курсовая работа: Галофильные микроорганизмы озера Мраморное

Действие высоких концентраций солей на микроорганизмы может быть обусловлено как самим растворенным веществом, так и его влиянием на активность воды.

В живых клетках вода служит средой, в которой молекулы разных размеров взаимодействуют между собой. Структура воды, в которой находятся растворенные вещества, контролирует все жизненно важные процессы в клетке: действие ферментов и регуляцию их активности, ассоциацию и диссоциацию органелл, структуру мембран и их функционирование. Небольшие изменения в концентрации растворенных веществ и активности воды могут приводить к значительным физиологическим изменениям. Многоклеточные организмы выработали специальные физиологические механизмы для поддержания постоянного состава не только жидкостей тела, но и внутриклеточной среды (Самарина, 1977).

Однако микробные клетки должны самостоятельно приспосабливаться к внешней водной среде. Клетки, растущие при высоких концентрациях растворенных веществ, не способны поддерживать цитоплазму в более разбавленном состоянии. Хотя внутриклеточная среда микроорганизмов по химическому составу сильно отличается от внешней, не известно ни одного вида, который был бы способен поддерживать внутри клеток общую концентрацию растворенных веществ на более низком уровне, чем в окружающей среде (Заварзин и др., 1999).

Источником галофильных бактерий служат природные соленые озера. Экосистемы соленых озер, как правило, обладают низким биоразнообразием по сравнению с другими водными и наземными экосистемами. В то же время, поддержание устойчивого биотического круговорота требует определенного минимального уровня биоразнообразия. Поэтому соленые озера, возможно, являются примерами экосистем с биоразнообразием, близким к минимально возможному для устойчивого функционирования биотического круговорота. Например, Мертвое море, откуда было получено несколько штаммов, используемых учеными Израиля со времени первых исследований микрофлоры этого водоема (Агре, 1988). Следует отметить, что не во всех озерах такого рода NaCl является главным солевым компонентом: в Мертвом море содержание Мg2+ выше, чем содержание Na+ . Существуют и другие интересные соленые озера, которые, однако, в микробиологическом отношении либо мало, либо совсем не изучены. В этих озерах, по-видимому, нет никаких форм жизни, кроме бактерий и других микроорганизмов, встречающихся в них в большом изобилии. Это не означает, что такие микроорганизмы относятся к постоянным обитателям данных озер. Так, например, в озере Ассал, находящемся в отдаленной и почти недоступной части Французского Сомали, был выявлен ряд бактерий, среди которых преобладали пресноводные и эвригалинные виды (растущие в среде, содержащей Na концентрации от 1 до 5%); были также найдены умеренные и экстремальные галлофилы. Большинство выделенных видов не могло развиваться при тех концентрациях соли, которые были обнаружены в этом озере. Поэтому кажется наиболее вероятным, что к природным обитателям озера относятся только галофилы, остальные же микроорганизмы приносятся несколькими впадающими в него реками. Значительную часть обнаруженных микроорганизмов составляют бациллы. Это говорит о хорошей выживаемости данных видов в очень соленой воде (Громов, 1989). Некоторое время считали, что бактерии могут расти в незамерзающем пруду Дон-Жуан в Антарктике, где вода, активность которой (QW) близка к 0,45, представляет собой насыщенный раствор хлорида кальция. Полученные позже результаты убедительно свидетельствуют в пользу того, что найденные в этом пруду бактерии были принесены внешними потоками. Поэтому величина, равная 0,62, может по-прежнему рассматриваться как минимальная активность воды, при которой еще возможен рост микроорганизмов (Летунова, Ковальский, 1978).

Организмы, толерантные к солям и другим растворенным веществам, широко распространены среди бактерий, грибов, дрожжей, водорослей и простейших, а также среди вирусов, специфичных для некоторых из этих организмов. К наиболее характерным для этой группы организмам относятся экстремально галофильные бактерии родов На loba сterium и Наlососсus, способные к росту на насыщенном растворе NаС1 (около 32% или 5,2М). Они характеризуются тем, что нижний, критический для их роста предел содержания NаCl составляет 12—15%, в то же время целый ряд других организмов, способных к росту в насыщенном растворе NaС1, нуждается в значительно меньших его количествах, чем экстремальные галофилы, галобактерии и галококки обладают многими биохимическим свойствами, отличающими их от других форм микроорганизмов. Не давно открытый актиномицет А c t i nopoliispora halophila , для которого минимальная потребность в NaС1 составляет 10% на твердой среде и 12% на жидкой, также может рассматриваться как экстремальный галофил, правда занимающий пограничное положение, так как у него отсутствуют некоторые из биохимических «маркеров», характерных для других экстремальных галофилов. Статус пограничного организма должен быть также присвоен фотосинтезирующей бактерии Есtothiorhodospira halophila , которая может расти при несколько более низкой концентрации NaCl, чем экстремальные галофилы (Летунова, Ковальский, 1978).

К умеренным галофилам было отнесено несколько организмов, вызывающих порчу пищевых продуктов и способных расти при концентрациях NaCl от 0,5 до 3,5 М (приблизительно 3—20%) (Агре, 1988). Это определение относится также ко многим морским бактериям, которые нуждаются для своего роста в присутствии NаС1 в концентрации около 0,5 М (3%), но, как было установлено при дальнейшем исследовании, выдерживают значительно более высокие концентрации NаС1, например 20, 25 и даже 30% (Дзюба, 1997). Полученные в последнее время данные показывают, что точное определение нижней концентрации соли, необходимой для роста умеренно галофильных бактерий, невозможно, если при этом не указывается температура. При 20°С описанный недавно вид Рlanococcus halophilus растет при почти полном отсутствии в среде ионов Nа+ (0,01 М). При повышении температуры до 25°С или выше концентрация NаС1 должна быть увеличена по крайней мере до 0,5М, причем NаС1 не может быть заменен КС1 или какими-либо ионными веществами. Таким образом, если эксперименты проводятся при 25°С, то данный организм (способный расти в присутствии 4,0 М NаС1) можно классифицировать как высокотолерантный к соли, тогда как при 20°С его следует рассматривать как умеренный галлофил (Ляликова, 1970).

Большая часть галофильных организмов, то есть «любящих» высокую концентрацию солей (лат. Halo- соль) входят в класс Archeobacteria . К этому классу относятся бактерии (называемые архебактериями), обладающие уникальными физиологическими, биохимическими свойствами и экологией, резко отличающими их от остальных прокариот. В частности, они отличаются от других бактерий составом и первичной структурой рибосомальных 16 S и 5 S РНК; составом мембранных липидов и образованием однослойной липидной мембраны (у других бактерий липидные мембраны двухслойные); составом клеточных стенок (они состоят не из муреина, а из других биополимеров, кислых полисахаридов, белков и псевдомуреина). К группе галобактерий отнесены роды Halococcus, Halobacterium , «квадратная бактерия» и другие, отличающиеся способностью развиваться на средах с высокими концентрациями NaCl (20-25%). Это так называемые экстремальные галлофилы. Среди них имеются аэробы и факультативные анаэробы. Участвуют в превращении углерода и азота в засоленных почвах, водоемах и других субстратах (Мишустин, 1987).

1.2. Физиолого-биохимические особенности галофильных микроорганизмов

Галофильные архебактерии распространены там, где есть подходящие для этого условия с высоким содержанием NaС1 и других необходимых ионов: в природных соленых водоемах, бассейнах для выпаривания соли, белковых материалах, консервируемых с помощью соли (рыба, мясо, шкуры). Могут расти в насыщенном растворе NаС1 (30 %). Нижний предел концентрации соли для роста большинства видов составляет 12—15% (2—2,5 М); оптимальнее содержание — между 20 и 26 % (3,5—4,5 М). Высоки потребносш галобактерий и в других ионах: оптимальный уровень Мg2+ в среде - 0,1—0,5 М, К+ - примерно 0,025 М (Гусев, 2003).

Влияние ионов на галобактерий достаточно специфично. Для поддержания клеточной стабильности в первую очередь требуется хлористый натрий. Ионы Na+ взаимодействуют с отрицательнш заряженными молекулами клеточной стенки галобактерий и предают ей необходимую жесткость. Внутри клетки концентрация NaCl невысока. Основной внутриклеточный ион — К+ , содержание которого может составлять от 30 до 40 % сухого вещества клеток, а градиент между внеклеточной и внутриклеточной концентрациями достигать 1:1000. Ионы К+ (наряду с другими) необходима для поддержания ионного равновесия вне и внутри клетки, стабилизации ферментов, мембран и других клеточных структур.

В Определителя бактерий (Берги, 1989) экстремально галофильные архебактерии объединены в порядок Halobacteriales семейство Наlоbасtеriaсеае и включает 6 родов и более 20 видов, различающихся формой клеток (палочки, кокки, квадраты), способностью к движению, отношением к кислотности среди, устойчивостью к NaСl и другими признаками.

В составе клеточных стенок не обнаружен пептидогликан. У представителей рода Наlоbасtеriит клеточная стенка толщиной 15 — 20 нм построена из регулярно расположенных гексагональных субъединиц, состоящих в основном из гликопротеинов. Клеточная стенка галобактерий рода На l ососсиs имеет толщину 50- 60 нм и состоит из гетерополисахаридов (Егоров, 1976).

ЦПМ содержит около 1/3 липидов и 2/3 разных белков, включая обычные для эубактериальных мембран наборы флавопротеинов и цитохромов. Основная масса липидов экстремальных галофилов отличается от характерных для эубактерий липидов тем, что в их молекуле глицерин связан не с остатками жирных кислот, а с С20-терпеноидным спиртом — фитанолом. Фосфолипидные и гликолипидные производные глицеринового диэфира могут в определенных условиях составлять до 80 % общего содержания липидов в клетках. Помимо уникальных липидов клеточные мембраны экстремальных галофилов содержат много каротиноидных пигментов (основной — бактериоруберин), обусловливающих окраску колоний от розового до красного цвета, что имеет для галофилов немаловажное значение как средство защиты против избыточной радиации, поскольку для их мест обитания характерна обычно высокая освещенность.

При недостатке в среде О2 в ЦПМ галобактерий индуцируется синтез хромопротеина — бактериородопсина, белка, соединенного ковалентной связью с С20-каротиноидом ретиналем. Свое название хромопротеин получил из-за сходства с родопсином — зрительным пигментом сетчатки позвоночных. Оба белка содержат в качестве хромофорной группы ретиналь, различаясь строением полипептидной цепи. Бактериородопсин откладывается в виде отдельных пурпурных областей (бляшек) на ЦПМ красного цвета, обусловленного высоким содержанием каротиноидов. При выращивании клеток на свету в условиях недостатка О2 пурпурные участки могут составлять до 50 % поверхности мембраны. В них содержится от 20 до 25 % липидов и только один белок — бактериородопсин. При удалении из среды солей клеточная стенка растворяется, а ЦПМ распадается на мелкие фрагменты, при этом участки мембраны красного цвета диссоциируют, а пурпурные бляшки сохраняются и могут быть получены в виде отдельной фракции (Кузнецов, 1970).

Генетический материал экстремальных галофилов представлен в виде основной и сателлитных ДНК. Последние составляют от 11 до 30 % всей содержащейся в клетках ДНК и состоят из замкнутых кольцевых молекул. Основная и сателлитные ДНК различаются нуклеотидным составом: молярное ГЦ-содержание основной ДНК — порядка 66—68, а сателлитных — 57—60 %. Высокий уровень сателлитных ДНК — уникальная черта организации генетического материала экстремальных галофилов, значение которой пока не ясно. Предполагается, что сателлитные ДНК — не эписомы, а составная часть генома этих бактерий (Овчинников, 1982).

Экстремальные галофилы имеют сложные пищевые потребности. Для роста большинства видов в состав сред должны входить дрожжевой экстракт, пептон, гидролизат казеина, набор витаминов. Высокой требовательностью к среде отличаются представители родов На l оbacterium и На l ососсus . Основным источником энергии и углерода служат аминокислоты и углеводы. Метаболизм глюкозы осуществляется по модифицированному пути Энтнера—Дудорова, отличающемуся тем, что глюкоза без фосфорилирования окисляется в глюконовую кислоту. Последняя превращается в 2-кето-З-дезоксиглюконовую кислоту, которая расщепляется на два С3-фрагмента: пировиноградную кислоту и глицериновый альдегид. Из глицеринового альдегида в результате нескольких ферментативных преобразований также образуется пировиноградная кислота. Дальнейшее ее окисление происходит в замкнутом ЦТК.

Основной способ получения энергии экстремальными галофилами — аэробное дыхание. В ЦПМ обнаружены цитохромы b, с, а также цитохромоксидаза о-типа (Ляликова, 1970). Электроны в дыхательную цепь поступают с НАД-зависимых дегидрогеназ. В анаэробных условиях в темноте источником энергии может служить анаэробное дыхание с использованием NO3- в качестве конечного акцептора электронов, а также процесс сбраживания аргинина и цитрулина. Свет служит дополнительным источником энергии, аппарат для использования которого подключается при недостатке O2 .

Используемый галобактериями механизм преобразования солнечной энергии в энергию химических связей, пригодную для использования в биологических процессах, отличается от механизма фотосинтеза в растениях и зеленых водорослях, содержащих хлорофилл. Для этой цели в галобактериях используется бактериородопсин – вещество, сходное с родопсином, обеспечивающим зрительное восприятие у человека и животных. В клетках Н. salinarium и некоторых других галобактерий обнаружены 3 фотоактивных пигмента, все они ретинальсодержащие белки. Один из них, названный сенсорным родопсином (5-родопсин), обеспечивает фототактическую реакцию бактерий. Красный и желто-синий свет действуют на них как аттрактанты, синий и УФ — как репелленты. S-родопсин существует в двух спектрально различных формах, каждая из которых претерпевает фотохимические превращения. Поглощение фотона красного света приводит к генерированию сигнала, по которому бактерии начинают перемещаться в направлении к источнику света. При поглощении фотона синего света наблюдается противоположная реакция. Максимальный эффект в обоих случаях достигается при длине волны 565 и 370 нм соответственно. Фотосенсорная реакция обеспечивает оптимальную для клеток галобактерий пространственную ориентацию. Клетки покидают области, в которые проникает губительное коротковолновое излучение и с помощью жгутиков или газовых вакуолей концентрируются в зонах с благоприятным для них световым режимом. Этим достигаются и оптимальные условия для фотофосфорилирования, так как область спектра, вызывающая положительную тактическую реакцию, и спектр поглощения фотосинтетического пигмента совпадают (Шлегель, 1987).

Длительное время считали, что без участия хлорофилла фотосинтез не возможен. Способность некоторых экстремально галофильных археобактерий осуществлять фотосинтез бесхлорофилльного типа была обнаружена в начале 70-х гг. XX в. Д.Остерхельтом и В. Стокениусом, идентифицировавшими в ЦПМ Halobacterium salinarium бактериородопсин - белок, ковалентно связанный с каратиноидом, и показавшими способность этого белка к светозависимому переносу протонов через мембрану, приводящему в конечном итоге к синтезу АТФ. Фотофосфорилирование, обнаруженное у этих архебактерий,- единственный пример превращения энергии света в химическую энергию АТФ без участия электронтранспортной цепи.

Использование световой энергии для создания трансмембранного градиента протонов происходит с участием бактериородопсина и не связано с переносом электронов по цепи переносчиков. Этот хромопротеин с молекулярной массой 26 кДа содержит полипептидную цепь, построенную из 248 аминокислотных остатков и на 75 % состоящую из а-спиральных участков. Последние образуют 7 тяжей, ориентированных перпендикулярно плоскости мембраны. Ретиналь расположен параллельно плоскости мембраны и, следовательно, перпендикулярно белковым тяжам. Связь между ретиналем и полипептидной цепью осуществляется через Шиффово основание, образованное в результате взаимодействия альдегидной группы ретиналя с е-аминогруппой 216-го лизинового остатка.

Шиффово основание в темноте находится в протонированной форме. Поглощение кванта света бактериородопсином вызывает изменение конформации ретиналя и приводит к отщеплению Н+ от Шиффова основания.

Бактериородопсин, в молекуле которого Шиффово основание находится в протонированной форме, поглощает свет с длиной волны 570 нм, а в депротонированной — при 412 нм. Протон, отделившийся на свету от Шиффова основания, переходит во внеклеточное пространство, а Н+, протонирующий Шиффово основание, поглощается из цитоплазмы. Таким образом, под действием света бактериородопсин «перебрасывает» протоны с одной стороны мембраны на другую. В результате работы циклического механизма, получившего название бактериородопсиновой протонной помпы, при освещении по разные стороны мембраны возникает градиент концентрации Н+, достигающий 200 мВ, в создании которого участвуют электрический и химический компоненты. Разрядка А(1H+ с помощью Н+ — АТФ-синтазьг приводит к синтезу АТФ (Гусев, 2003).

Несмотря на кажущуюся простоту, очевидно, что бактериородопсиновая протонная помпа представляет собой сложную систему. Прежде всего, путь, который должен пройти Н+ , чтобы пересечь мембрану, составляет не менее 5 нм, т. е. значительно превышает расстояние, на которое он может быть перенесен при любом конформационном изменении ретиналя. Это означает, что поглощение кванта света должно приводить к возникновению напряженной конформации всего бактериородопсинового комплекса, служащей в дальнейшем источником энергии для переноса Н+ против электрохимического градиента. В организации такого переноса принимают участие ориентированные поперек мембраны а-спиральные тяжи и мембранные липиды, формирующие протонные каналы, природа и механизм действия которых пока не известны.

Все эти данные говорят об обособленности группы галофильных микроорганизмов, их особом эволюционном пути, об их уникальности и необходимости изучения данных микроорганизмов, обитающих в соленых озерах, почвах и других субстратах (Власов, 1973).

1.3 Формирование условий среды обитания микроорганизмов

Средой обитания для микроорганизмов в водоемах является вода и донные осадки. Между ними существует постоянный обмен вещества и энергии. Поэтому формирование условий среды носит взаимозависимый характер (Кузнецов, 1970; Горленко и др., 1977; Романенко, 1985).

Формирование природной воды определяется взаимодействием ряда факторов: геоструктурных особенностей отдельных участков земной коры, образовавшейся в течение длительной геологической истории, современной физико-географической обстановки, взаимодействием породы, воды, газа и живых организмов (Самарина, 1977; Крамаренко, 1983). Испытывая влияние комплекса физико-географических факторов и гравитационного поля Земли, все воды подчиняются закону гидрохимической зональности, проявляющуюся как по площади, так и по вертикали водного слоя (Самарина, 1977). Суть данного закона заключается в том, что с переходом от климатических зон избыточного и нормального увлажнения (гумидный климат) к зонам скудного и малого увлажнения (аридный климат) изменяются параметры химического состава озерной воды. В степной и полупустынной зонах, где отмечается более засушливый климат, чем в лесной и тундровой зонах, вместо пресных озер встречаются солоноватые и соленые озера (Алабышев, 1932; Кузнецов, 1970).

Большое значение на формирование состава озерных вод оказывают кристаллические породы, слагающие положительные формы рельефа (Горленко и др., 1999). В процессе их химического выветривания, протекающих непрерывно и в огромных масштабах в природе, образуются растворимые соли. Наибольшей растворимостью обладают плагиоклазы, затем калиево-полевые шпаты и наименьшей - кварц (Самарина, 1977). В аридной и полуаридной зоне (рН>7) в процессе химического выветривания полевых шпатов ряд катионов (К+ , Ка+ , Са2+ и др.) частично удаляются в системе, где образуется глинистый материал. Образующиеся карбонатные и гидрокарбонатные соли щелочей и щелочеземель переходят в раствор, придающие воде соответствующую реакцию.

Состав озерных вод во многом определяется типом его питания. Водно-солевое питание озера получают за счет грунтовых вод и временных дождевых потоков. Грунтовые воды по составу различны, чаще преобладают гидрокарбонатные. Общая сумма солей достигает до 2,5 г/л.

Большое влияние на формирование и режим озер оказывает многолетняя и сезонная мерзлота. Она повышает уровень грунтовых вод, ускоряет процесс засоления почв, а, следовательно, и накопление солей в озерах.

К-во Просмотров: 192
Бесплатно скачать Курсовая работа: Галофильные микроорганизмы озера Мраморное