Курсовая работа: Генератор трикутних напруг

Використання базових матричних кристалів і що програмуються логічних матриць є іншим способом розширення функціональних можливостей інтегральних схем. У масовій кількості виготовляються єдині матриці нескомутованих (не з'єднаних між собою) елементів. Електричні зв'язки між ними виконують індивідуально на етапі формування розведення, виходячи з вимог замовника. Виготовивши базову матрицю або що програмується логічну матрицю одного типу, на її основі можна створити сотні різноманітних функціональних вузлів різного призначення. Причому різниця між базовими матричними кристалами і логічними що програмуються матрицями полягає в тому, що в останніх з'єднаннях можна не тільки створювати, але і руйнувати.

Створено також більш прості напівзаказні інтегральні схеми, що містять набори елементів. З них можуть бути отримані й аналогові пристрої, наприклад підсилювачі електричних сигналів. Це дозволяє знизити витрати на проектування і виробництво електронних пристроїв різного призначення і зменшити терміни їх впровадження в серійне виробництво.

У розвитку електроніки протягом багатьох років залишається стабільним тільки одне – це безупинна зміна елементної і схемотехнічної баз.

У зв'язку із широким вибором інтегральних схем, параметри яких відомі з технічних умов, змінилися задачі, що стоять перед розроблювачами електронної апаратури. Якщо раніше значна частина часу ішла на розрахунки режимів окремих каскадів, визначення їхніх параметрів, рішення питань термостабілізації і т. п., то в даний час головна увага приділяється питанням вибору схем з'єднань і взаємного узгодження мікросхем.

Типові мікровузли дозволяють зібрати потрібний електронний блок без детального розрахунку окремих каскадів. Розроблювач електронної апаратури, визначивши, які перетворення повинний перетерпіти електричний сигнал, підбирає необхідні інтегральні мікросхеми, розробляє схему їхніх з'єднань і вводить зворотні зв'язки необхідного вигляду. І тільки в тому випадку, що коли випускаються інтегральні мікросхеми не дозволяють вирішити якійсь конкретне питання, до них добавляють окремі вузли на дискретних компонентах, що вимагають проведення відповідних розрахунків, або розробляють мікросхеми часткового застосування.

Ефективне застосування інтегральних мікросхем, особливо аналогового типу, неможливо без знання принципів їхньої дії й основних параметрів, а також теорії електронних кіл. Тому вивченню даної дисципліни звичайно приділяється підвищена увага.


1. Розробка технічного завдання

Метою курсового проекту є розрахунок та визначення технічних параметрів схеми генератора трикутних напруг. Заданий діапазон періоду повтору імпульсу складає від 10мс до 10мкс, значення вихідної напруги лежить в діапазоні від 0,1В до 10В, значення опору навантаження складає 4Ом. Необхідно розрахувати значення кожного з елементів схеми генератора трикутних напруг та згідно розрахункам вибрати необхідні операційні підсилювачі, транзистори та діоди.

Конструктивні схеми генератори трикутної напруги використовуються в різних варіантах у залежності від області застосування.

Можливі області застосування генератора трикутних імпульсів надзвичайно різноманітні, можна виділити лише окремі сфери:

- промислова техніка виміру і регулювання;

- робототехніка;

- побутова техніка;

Застосування того чи іншого генератора в цих сферах визначається насамперед відношенням ефективності. При промисловому застосуванні визначальним фактором є погрішність, що при регулюванні процесів повинна складати < 1%, а для задач контролю - 2...3%. Для спеціальних застосувань в області робототехніки генератори можуть досягати навіть рівня 10...100 тис. Прилад повинний відтворювати вимірювані величини з погрішностями, що допускаються. При цьому слово «відтворення», еквівалентне в даному трактуванні слову «відображення», розуміється в самому широкому змісті: одержання на виході приладу величин, пропорційних вхідним величинам; формування заданих функцій від вхідних величин (квадратична і логарифмічна шкали й ін.); одержання похідних і інтегралів від вхідних величин; формування на виході слухових чи зорових образів, що відображають властивості вхідної інформації; формування керуючих сигналів, використовуваних для керування контролю; запам'ятовування і реєстрація вихідних сигналів.

Розроблений генератор трикутної напруги, формує вихідну напругу яка може використовуватись як вхідний сигнал для подальшого перетворення в необхідний сигнал чи імпульс. Даний сигнал подається в подальшому на вимірювальний прилад, за допомогою якого можна вимірювати час імпульсу та амплітуду будь – яких сигналів, але в залежності від діапазону. Вимірювальний сигнал, одержуваний від контрольованого об'єкта, передається у вимірювальний прилад у виді імпульсу або у виді енергії. Можна говорити про сигнали: первинних - безпосередньо характеризують контрольований процес; сприйманих чуттєвим елементом приладу; поданих у вимірюльну схему, і т.д. При передачі інформації від контрольованого об'єкта до покажчика приладу сигнали перетерплюють ряд змін за рівнем і спектром і перетворяться з одного виду енергії в іншій.

Та частина приладу, у якій первинний сигнал перетвориться, наприклад, в електричний, називається первинним перетворювачем. Часто цей перетворювач сполучається з чуттєвим елементом. Сигнали з виходу первинного перетворювача надходять на наступні перетворювачі вимірювального приладу.

Згідно ДСТУ 2681-94 „Метрологія. Терміни та визначення” та ДСТУ 2682-94 „ Метрологія. Метрологічне забезпечення ” даний розроблений генератор трикутних напруг - відноситься до первинних вимірювальних перетворювачів.


2. Розробка структурної схеми

2.1 Аналіз існуючи х методів вимірювання та формування напруги

Генератор - це пристрій, що перетворює енергію джерела живлення в електричні коливання заданої форми, частоти і амплітуди.За формою імпульсів розрізняють генератори прямокутних, трикутних і синусоїдальних імпульсів, генератори пилоподібної напруги.

Пилоподібна напруга виходить в процесі заряду або розряду конденсатора. Напруга пилоподібної форми (лінійно мінілива напруга) характеризуються двома проміжками часу: часом робочого ходу, протягом якого напруга змінюється за лінійним законом, і часом зворотнього ходу, протягом якого напруга повертається до вихідного значення. Зазвичай закон зміни напруги під час зворотного ходу не істотний. У мультівібраторі напруга на частотно-задаючому конденсаторі змінюється від напруги спрацьовування до напруги відпускання за експоненціальним законом, однак буває необхідно отримати коливання трикутної форми з високою лінійністю.

У якості реалізації генератора трикутних напругиможна використовувати багато різних схем. Найбільш ефективними можна вважати схеми підключення на основі операційних підсилювачів, які можуть надають великий коефіцієнт підсилення, який у свою чергу забезпечує досить велику вихідну напругу. Також використання операційних підсилювачів генераторах дозволяє дозволяє забезпечити стабільної частоти від долі герц до сотні кілогерц. Як правило для реалізації генератора використовують схеми підключення під назвою «інтегратор» та «диференціатор», остання методика не є досить вдалою для забезпечення виходу трикутної напруги.

«Диференціатор» сигналу, побудований на операційному підсилювачі.

Являється підсилювачем на високих частотах (рисунок 2.1).


Рисунок 2.1 - Деференціатор

В такому підключенні здійснюється деференціювання вихідного сигналу.

, (1)

, (2)

К-во Просмотров: 631
Бесплатно скачать Курсовая работа: Генератор трикутних напруг