Курсовая работа: Гидротермальные изменения в эпитермальных системах

4H2 S + 8O2 = 4H2 SO4 4SO2 + 4H2O = 3H2SO4 + H2S 2FeS2 + 7H2O + 9O2 = 2Fe2O3 ' 3H2O + 4H2SO4

Первая реакция 15 является обычной и может привести к образованию сульфатно-кислых, нагретых паром, конденсатов вблизи поверхности. Кислород для этой реакции получается из атмосферы. Это приводит к обычной поверхностной аргиллизации, перекрывающей многие системы.

Третья реакция происходит, в результате окисления ранее образованных сульфидов железа в супергенных условиях, в постминерализационных процессах, вовлекающих окислительные грунтовые воды. Это приводит к окислению рудной зоны и перекрытию сульфидных руд.

Вторая реакция представляет собой переход магматического SO2 в сульфаты и сульфиды и также сопровождается HCl и HF. Это глубинные кислые гидротермы будут находиться в недрах системы.

Комплекс "поверхностной аргиллизации" характеризуется высокой степенью гидролиза и выщелачиванием, относительно высоким содержанием общей серы и окислительными условиями. Следовательно, сера окисляется и серная кислота выщелачивает катионы, вынося алюминий и силикаты и/или сульфатные комплексы. В зависимости от температуры и относительной концентрации металлов, изменяются характеристики комплексов этих минералов. В большинстве случаев эти гидротермальные изменения происходят сверху вниз; хотя высокосерные системы не всегда следуют этому обобщению.

. Обобщённая иллюстрация взаимоотношений полей стабильности продуктов гидротермальных изменений дана в виде функции активностей K2 SO4 и H2 SO4 . Каолинит стабильнее пирофиллита при t ниже 2500 С. Кварц присутствует при постоянных t и Р; размер поля остаточного кремнезёма зависит от концентрации алюминия. Диаграмма и фазовые взаимоотншения составлены Henley et al.; Stoffregen.

Ореол гидротермальных изменений от рудного остаточного кварца до свежих пород в Summitville в Колорадо..

При рН 1.7-2.0, происходит общее выщелачивание катионов, оставляя только кремневый осадок. При пониженных рН проходить образование алунита, каолинита, иллита и КПШ в свежих породах.

Тонкозернистый рассеянный пирит часто встречается вблизи нижней границы сульфатно-кислых изменений, где железо осаждается из раствора вследствие присутствия восстановленной серы. Аморфный кремнезём и кристобалит являются обычными минералами, связанными с сульфатно кислыми изменениями.

В зависимости от концентрации общей серы в жидкой фазе самородная сера может образовываться наряду с алунитом или каолинитом. Самородная сера может осаждаться прямо из раствора по мере конденсации пара, а H2 S адсорбируется жидкостью. Так как H2 S окисляется до сульфата, то общая сера в растворе будет возрастать и рН уменьшаться. При рН 2-4 самородная сера становится стабильной, наряду с сульфидами и сульфатами.

Нижний предел рН поверхностных сульфатных вод обычно ~ 2; более низкие рН свидетельствуют о присутствии вулканогенного HCl, HF и т.д., которые не были нейтрализованы. Следовательно, остаточный кремнезём, главным образом, ассоциируется с высокосерными средами.

Золотоносные кислые сульфатные термы на Филиппинах и в Н. Зеландии были недавно интерпретированы, как результат адсорбции газового потока в грунтовых водах. В результате этого формируются большие площади поверхностных гидротермальных изменений. Bogie et al., назвал эти структуры Кайпохан и предположил, что они образовались в результате остывания на глубине парогазовой смеси в результате конденсации пара, но при отделении газов к поверхности. По мере того, как пар нагревал сульфатные гидротермы, H2 S окислялся до сульфата. Этот процесс может не сопровождаться какими-либо гидротермальными изменениями; однако, изменения являются индикатором близости глубинной гидротермальной системы, современной или древней. Вертикальное разделение поверхностной Кайпохан и глубинных гидротерм будет усиливаться в районах с высоким рельефом. Поскольку газы поднимаются под относительно большим углом, то в районах с высоким рельефом они будут располагаться ближе к глубинному восходящему потоку системы, чем потоки жидких гидротерм.

Связь между каолинитом и пирофиллитом показана на Рис. 4.

При насыщении кварцем, пирофиллит находится в равновесии с каолинитом при ~ 2500 С. Пирофиллит образуется при более высоких температурах. Этот парагенезис наблюдается, по-видимому, в равновесном состоянии в современных Филиппинских системах при более низких температурах, хотя минимальные температуры, как показывают эксперименты, при которых может существовать пирофиллит и диаспор - 2800 С.

В кислых условиях, при которых существуют стабильно пирофиллит и каолинит, кремнезём в растворе, по-видимому, контролируется растворимостью полиморфными разновидностями, а не кварцем. Если кремнистый минерал кристобалит, то оба алюмосиликата сосуществуют при 1500 С. Следовательно, вывод Kesler et al.,, что пирофиллит-каолиновая зона в Пуэбло Вегио показывает минимальную температуру 2600 С, по-видимому, неправильный; они допускали, что современный кварц образовывался как кварц. Скорее всего, 1500 С температура допускает предположение, что месторождение формировалось сразу под поверхностью с последующей раскристаллизацией полиморфных разновидностей кремнезёма в кварц.

Распространение минералов сульфатно-кислых гидротермальных изменениях изучалось в активной системе Хатгобару на о. Кюсю.


Алунит, каолинит, пирофиллит и самородная сера встречены на глубинах 400-600м. Скважины же вскрыли типичные разбавленные хлоридные гидротермы с нейтральными рН на глубине 800 м при t=280°C Здесь сульфатно-кислые гидротермы, образованные на поверхности района андезитового вулканизма с высоким рельефом, инфильтруются в систему вдоль разломов. Это приводит к образованию воронкообразного ореола гидротермальных изменений. Этот ореол изменённых пород распространился латерально по наиболее проницаемым горизонтам. Зоны распределились от кислого изменённого ядра с переходом в зону регионального метаморфизма пропилитового типа, поскольку кислые гидротермы нейтрализовались в результате взаимодействия вода-порода.

3 Классификация гидротермальных изменений

Исследователи, изучавшие гидротермальные изменения, неоднократно классифицировали наблюдаемые комплексы гидротермальных минералов в группы. Это было необходимо, т. к. в этом процессе образовывался очень разнообразный набор гидротермальных минералов. Таблица 1, а показывает минералы, образованные в активных геотермальных полях и эпитермальных рудных месторождениях.

Минералы, представленные в 17 эпитермальных месторождениях, приведены в таблице 1,b. Они включают много редких, главным образом, рудных минералов.


Таблица 2 представляет обобщение типов гидротермальных изменений в алюмосиликатных породах, т.е. обычно в изменённых вулканических, осадочных и метаморфических районах. Эта классификация базируется в основном на классификации Meyer, Henley, но термины использовались в различных контекстах Rose, Lowell, Guilbart. Однако, это целесообразно обсудить прежде, чем использовать общие термины, т.к. они часто используются по разному различными исследователями.

Когда предполагается наличие гидротермальных изменений первичных минералов в породе, то необходимо определить параметры интенсивности гидротермальных изменений. Эта величина является мерой степени реагирования породы с гидротермами, в результате чего образовались новые минералы. Параметры легко определить по соотношению свежей и полностью изменённой породой.

Интенсивность не заменяет диагностику вновь образованных минералов, а только их содержание.

Типы гидротермальных изменений в алюмосиликатных породах

Наоборот, классификация гидротермальных изменений зависит от определения новых минералов и основывается на их значимости в зависимости от субповерхностных условий. Это эмпирический и более объективный параметр, чем интенсивность, получается при макроскопическом и микроскопическом исследованиях с помощью рентгеноскопического и дифференциального термического анализов. Классификация зависит от минералогии, хотя высокая интенсивность не означает высокую степень изменения. Некоторая часть используемой информации, получаемой при исследовании гидротермальных минералов, применяется для определения палеотемператур в эпитермальных системах. Некоторая сложность существует в определении теоретической термической стабильности минералов в природных системах. Она заключается в ограниченном количестве имеющихся в наличии термодинамических данных, влияния твёрдых растворов на стабильность минералов и трековых и летучих компонентов.

К-во Просмотров: 350
Бесплатно скачать Курсовая работа: Гидротермальные изменения в эпитермальных системах