Курсовая работа: Главные особенности современной естественной науки

Таким образом, в настоящее время идея глобального эволюционизма – это не только констатирующее положение, но и регулятивный принцип. С одной стороны, он дает представление о мире как о целостности, позволяет мыслить общие законы бытия в их единстве, а с другой – ориентирует современное естествознание на выявление конкретных закономерностей глобальной эволюции материи на всех ее структурных уровнях, на всех этапах ее самоорганизации.

2. Синергетика как новое миропонимание конца XX века

На современном постнеклассическом этапе познания материального мира чрезвычайно важную роль играет парадигма самоорганизации, которая служит естественнонаучной основой философской категории развития. В настоящее время установлено, что обязательным условием развития является процесс самоорганизации, приводящий к возникновению качественно новых материальных структур.

Длительное время в науке доминировало представление об отсутствии явления самоорганизации в неживой природе. Считалось, что объекты неорганического мира способны изменяться только в направлении дезорганизации. Последнее означает, что в соответствии со вторым началом термодинамики, системы неживой природы могут «эволюционировать» лишь в сторону возрастания их энтропии, а значит, хаоса. Считалось, что самоорганизующиеся процессы присущи только живым системам.

Первые серьезные усилия по научному исследованию вопросов самоорганизации были предприняты в кибернетике. Эта наука имела дело как с живыми, так и с техническими (построенными из неживого вещества) управляемыми и саморегулирующимися системами, т.е. с системами, в которых самоорганизация заложена изначально. Кибернетику интересовали гомеостатические системы, поддерживающие свое функционирование в заданном режиме. Само понятие гомеостазиса указывает на то, что в гомеостатической системе речь может идти только о самоорганизации, направленной на достижение оптимальной структуры ее элементов. Такая идея позволяет понять факт устойчивости и сохранения систем (в том числе живых). Но с позиций гомеостазиса нельзя понять, как возникают новые системы, причем не только в живой, но и в неорганической природе. К тому же, проблема гомеостазиса в кибернетике рассматривается с чисто функциональной точка зрения и поэтому в ней не анализируются конкретные механизмы самоорганизации.

Постепенно в науке накапливалось все большее число фактов, свидетельствовавших о возникновении упорядоченных структур и феномена самоорганизации в неживой природе при наличии определенных условий. Даже повседневные наблюдения (образование, например, песчаных дюн, вихрей на воде, различного рода кристаллов и т.п.) свидетельствуют о том, что и в неживой природе, – наряду с дезорганизацией, – происходит также и самоорганизация, которая проявляется в возникновении новых материальных структур. В настоящее время считается установленным, что процессы самоорганизации (так же как, разумеется, и дезорганизации) могут происходить в сравнительно простых физических и химических средах неорганической природы. А это означает, что простейшая, элементарная форма самоорганизации имеет место уже в рамках физической и химической форм движения материи. Причем, чем сложнее форма движения материи, тем выше уровень ее самоорганизации.

Указанные наблюдения и обобщения привели к возникновению синергетики – междисциплинарного научного направления, изучающего общие и универсальные механизмы самоорганизации, т.е. механизмы самопроизвольного возникновения и относительно устойчивого существования макроскопических упорядоченных структур самой различной природы. Синергетика стирает, как казалось, непреодолимые грани между физическими и химическими процессами, с одной стороны, и биологическими и социальными процессами – с другой, ибо исследует общие механизмы самоорганизации и тех, и других.

Зарождение синергетики произошло в вашей стране. Еще в 60-х годах XX века отечественным ученым E. Белоусовым были начаты интересные эксперименты с так называемыми автокаталитическими химическими реакциями, которые затем были продолжены A.M. Жаботинским. Эти эксперименты показали, что наличие автокаталитических реакций значительно ускоряет процессы самоорганизации в химической форме движения. Были высказаны веские предположения, что именно автокаталитические самоорганизующиеся химические процессы послужили основой для перехода от предбиологической к биологической форме движения материи.

Позднее реакция Белоусова-Жаботинского послужило экспериментальной основой для построения математической модели самоорганизующихся процессов в бельгийской школе лауреата Нобелевской премии И.Р. Пригожина (1917-2003). Исследуя по преимуществу процессы самоорганизации в физических и химических системах, И.Р. Пригожин в целом ряде своих работ (часть из них переведена на русский язык) раскрывает исторические предпосылки и мировоззренческие основания теории самоорганизации.

В 70-80-х годах XX века работы в области синергетики быстро расширялись, в них включались все новые исследователи. В нашей стране разработкой теории самоорганизации на базе математических моделей и вычислительного (компьютерного) эксперимента занялась школа академика А.А. Самарского и члена-корреспондента РАН С.П. Курдюмова. Эта школа выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в нелинейных средах.

Немецкому профессору Г. Хакену (Институт синергетики и теоретической физики в Штутгарте) удалось объединить большую международную группу ученых, создавшую серию книг по синергетике. В этих работах представлялись результаты исследований процессов самоорганизации в самых разных системах, включая и социальные.

Создатели синергетики показали, что способность к самоорганизации является атрибутивным свойством материальных систем, а потому синергетика на сегодня является наиболее общей теорией самоорганизации.

Формирование синергетики в последней четверти XX столетия оказалось в чем-то схожим со становлением кибернетики в середине этого столетия. Такая схожесть основывается на обнаруженной общности в феноменах, имеющих место в системах неживой и живой природы, а также в социальных системах. Во всех этих материальных системах имеют место процессы самоорганизации.

Вместе с тем между кибернетикой и синергетикой существует и значительное различие. Кибернетика, возникшая на рубеже 40-50-х годов XX века, претендовала на общенаучное значение в изучении процессов управления, имеющих место в некоторых неорганических (созданных человеком), биологических и социальных системах. И, надо сказать, она успешно отстояла свой общенаучный статус. Синергетика претендует сегодня на большее: она выступает уже как новое миропонимание, как основа концепций глобального и космического эволюционизма.


Заключение

Новая система познавательных идеалов и норм обеспечивает значительное расширение поля исследуемых объектов, открывая пути к освоению сложных саморегулирующихся систем. В отличие от малых систем такие объекты характеризуются уровневой организацией, наличием относительно автономных и вариабельных подсистем, массовым стохастическим взаимодействием их элементов, существованием управляющего уровня и обратных связей, обеспечивающих целостность системы. Именно включение таких объектов в процесс научного исследования вызвало резкие перестройки в картинах реальности ведущих областей естествознания.

Процессы интеграции этих картин и развитие общенаучной картины мира стали осуществляться на базе представлений о природе как сложной динамической системе. Этому способствовало открытие специфики законов микро-, макро- и мегамира в физике и космологии, интенсивное исследование механизмов наследственности в тесной связи с изучением надорганизменных уровней организации жизни, обнаружение кибернетикой общих законов управления и обратной связи. Тем самым создаются предпосылки для построения целостной картины природы, в которой прослеживалась иерархическая организованность Вселенной как сложного динамического единства. Картины реальности, вырабатываемые в отдельных науках, на этом этапе еще сохраняли свою самостоятельность, но каждая из них участвовала в формировании представлений, которые затем включались в общенаучную картину мира. Последняя, в свою очередь, рассматривалась не как точный и окончательный портрет природы, а как постепенно уточняемая и развивающаяся система относительно истинного знания о мире.

Все эти радикальные сдвиги в представлениях о мире и процедурах его исследования сопровождались формированием новых философских оснований науки. Идея исторической изменчивости научного знания, относительной истинности вырабатываемых в науке онтологических принципов соединялась с новыми представлениями об активности субъекта познания. Он рассматривался уже не как дистанцированный от изучаемого мира, а как находящийся внутри него, детерминированный им. Возникает понимание того обстоятельства, что ответы природы на наши вопросы определяются не только устройством самой природы, но и способом нашей постановки вопросов, который зависит от исторического развития средств и методов познавательной деятельности. На этой основе вырастало новое понимание категорий истины, объективности, факта, теории, объяснения и т.п. Радикально видоизменялась и «онтологическая подсистема» философских оснований науки.

Развитие квантово-релятивистской физики, биологии и кибернетики было связано с включением новых смыслов в категории части и целого, причинности, случайности и необходимости, вещи, процесса, состояния и др. В принципе можно показать, что эта «категориальная сетка» вводила новый образ объекта, который представал как сложная система. Представления о соотношении части и целого применительно к таким системам включают идеи несводимости состояний целого к сумме состояний его частей. Важную роль при описании динамики системы начинают играть категории случайности, потенциально возможного и действительного. Причинность не может быть сведена только к ее лапласовской формулировке – возникает понятие «вероятностной причинности», которое расширяет смысл традиционного понимания данной категории.


Список использованной литературы

1. Айламазян А.К., Стась Е.В. Информатика и теория развития. – М.: Наука, 1989.

2. Волькенштейн М.В. Энтропия и информация. – М.: Наука, 1986.

3. Гивишвили Г.В. Антропогенная вселенная // Химия и жизнь. 1993. № 6. С. 9-11.

4. Карпенков С.Х. Основные концепции естествознания. – М.: Культура и спорт, ЮНИТИ, 1998.

5. Капица С.П.. Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. – М., 1997.

6. Моисеев Н.Н. Человек и ноосфера. – М.: Молодая гвардия, 1990.

7. Степин B.C., Горохов В.Г., Розов МЛ. Философия науки и техники. Учебное пособие для высших учебных заведений. – М., 1996.

8. Таннери П. Исторический очерк развития естествознания в Европе. – М., 1994.

9. Хокинг С. От большого взрыва до черных дыр. Краткая история времени. – М.: Мир, 1990

К-во Просмотров: 180
Бесплатно скачать Курсовая работа: Главные особенности современной естественной науки