Курсовая работа: К вопросу о Единой теории полей и взаимодействий

Сдвиг в области построения Единой теории поля наметился только после открытия слабого и сильного взаимодействий. Первым шагом стала теория электрослабого взаимодействия, построенная Саламом, Глэшоу и Вайнбергом в 1967 году на основе квантовой электродинамики (за нее они получили Нобелевскую премию в 1979 году, т.е. почти сразу). Затем в 1973 году была построена теория, описывающая сильное взаимодействие — квантовая хромодинамика. На основе этих двух теорий и была создана Стандартная модель, все предсказания которой подтвердились, кроме до сих пор не обнаруженного бозона Хиггса.

2. ПОДРОБНЕЕ ОБ ОБЪЕДИНЕНИИ ВЗАИМОДЕЙСТВИЙ

Одной из важных особенностей физики элементарных частиц на начальном этапе было различие между различными типами взаимодействий. Оказалось, что существует всего четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Интенсивность различных взаимодействий при энергиях порядка нескольких МэВ характеризуется следующими константами:

константа сильного взаимодействия бs ~ 1,

константа электромагнитного взаимодействия бe ~ 10-2 ,

константа слабого взаимодействия бw ~ 10-6 ,

константа гравитационного взаимодействия бG ~ 10-38 .

В основе идеи объединения различных взаимодействий лежит зависимость констант, слабого электромагнитного и сильного взаимодействий от расстояния. Из рис.1,3 видно как появляется такая зависимость. На рис. 1 показан механизм экранировки электрического заряда(*)электрона. Причина экранировки состоит в следующем: электрон может испускать виртуальные фотоны, которые в свою очередь могут превращаться в электрон - позитронные пары e + e - , пару м+ м- , пару мезонов р+ р- , K+ K- и т.д. В результате взаимодействия отрицательно заряженного электрона с виртуально образующимися парами частиц происходит их поляризация (поляризация вакуума). Притяжение между противоположно заряженными частицами приводит к экранировке отрицательного заряда исходного электрона положительно заряженными e+ , м+ , р+ -мезонами, располагающимися преимущественно ближе к электрону. Поэтому, при приближении пробного заряда к электрону, он будет чувствовать распределение поля виртуальных частиц. Т. е. величина измеренного заряда будет зависеть от расстояния между пробной частицей и электроном. Это называется в квантовой электродинамике экранировкой электрического заряда. Теоретические расчеты показывают, что с уменьшением расстояния величина наблюдаемого заряда растет, что и приводит к увеличению константы электромагнитного взаимодействия.

Рис.1 .Механизм экранировки электрического заряда

Рис. 2. Экранировка электрического заряда

Аналогичную ситуацию можно ожидать и в кквантовой хромодинамике (КХД). Цветовой заряд кварка будет экранироваться. При экранировке цветового заряда кварка в хромодинамике вокруг цветного кварка образуется поле виртуальных глюонов и кварк - антикварковых пар (рис. 3). Однако в квантовой хромодинамике в распределении цветового поля имеются существенные отличия. Т.к. глюоны имеют цветовой заряд, они взаимодействуют не только с кварками, но и с друг другом, что существенно меняет распределение цветового заряда вокруг кварка. Цветной кварк оказывается окружен преимущественно зарядами того же цвета. Поэтому, например, при приближении пробного цветового заряда к красному кварку он проникает внутрь облака красного цвета и, следовательно, величина измеренного красного заряда уменьшается - наблюдается эффект антиэкранировки. Т.е. при уменьшении растояния между цветными кварками величина взаимодействия уменьшается. Это явление называется асимптотической свободой кварков в адроне на малых расстояниях. Зависимость константы сильного взаимодействия от расстояния показана на рис.4(**)

Аналогичная ситуация имеет место и для константы слабого взаимодействия, которая также зависит от расстояния.

Рис. 3. Механизм антиэкранировки цветного заряда

Рис. 4. Антиэкранировка цветового заряда

Малость константы слабого взаимодействия при низких энергиях обусловлена тем, что слабые взаимодействия происходят в результате обмена частицами, имеющими большую массу (mW ~ 80 ГэВ, mZ ~ 90 ГэВ). При энергии порядка 100 ГэВ константа слабого взаимодействия возрастает до бw ~ 1/30.

Гипотеза о том, что слабое взаимодействие также обусловлено обменом некоторой заряженной частицей было выдвинута Юкавой еще в тридцатых годах. Завершение эта идея получила в рамках единой теории, связывающей электромагнитные и слабые взаимодействия, развитой в работах С. Вайнберга, А. Салама и Ш. Глэшоу.

В этой теории, которая носит название "стандартная модель", предсказывается существование тяжелых заряженных бозонов W+ и и нейтрального бозона Z0 со спином 1, обмен которыми и обуславливает слабое взаимодействие. В теории возникает также безмассовое векторное поле, отождествляемое с электромагнитным полем.По аналогии с сильным взаимодействием члены одного семейства, порождаемые или -бозоном объединяются в слабые левоспиральные изоспиновые дублеты

и

со слабым изоспином T = 1/2, которым приписываются значения T3 = +1/2 (нe ,u) и T3 = -1/2 (e,d). У антифермионов проекции слабого изоспина имеют противоположные знаки.

Слабые взаимодействия с изменением заряда (заряженные токи) описываются состояниями и . Они происходят с испусканием или поглощением или -бозонов. Слабые процессы с участием Z0 -бозона были названы процессами с нейтральными слабыми токами.

Таким образом в модели Вайнберга - Салама , , Z0 -бозоны и -квант являются квантами единого электрослабого поля. Стандартная модель, объединяющая электромагнитное и слабое взаимодействия, предсказывает связь между константами электромагнитного и слабого взаимодействий и соотношение между массами заряженных и нейтральных бозонов:

,

где иW - угол Вайнберга. Извлеченная из экспериментов величина sin2 иW = 0.23.

Обнаружение в 1973 г. слабых нейтральных токов явилось ярким подтверждением правильности стандартной модели, в которой были предсказаны значения масс промежуточных бозонов –m(Z0 ) ~ 90 ГэВ ; m(W+ ,) ~ 80 ГэВ

В стандартной модели лептоны и кварки группируются в левоспиральные дублеты - поколения.

1 поколение 2 поколение 3 поколение

Заряженные токи в лептонных процессах получаются при движении по столбцам. Переходов между поколениями лептонов до сих пор не наблюдалось, что зафиксировано в законе сохранения лептонных зарядов Le , Lм и Lф . Константы этих слабых процессов одинаковы или пока не различимы. Заряженные токи в процессах с кварками возможны не только при движении по столбцам, но и между поколениями, т.е. слабое взаимодействие смешивает кварки. Но слабые константы кварковых процессов

К-во Просмотров: 247
Бесплатно скачать Курсовая работа: К вопросу о Единой теории полей и взаимодействий