Курсовая работа: Классификация живых систем
По мнению автора, причина анабиотического состояния вирионов заключается в «минимальности» общей конструкции организма вируса и глубоком своеобразии свойственного вирусам способа организации процессов метаболизма. Существенной чертой вирусов является их метаболическая несамостоятельность — полная зависимость активной фазы их онтогенеза от деятельности энергозапасающих, ферментных и синтезирующих аппаратов живой клетки.. На этом основании в единой экоморфологической системе организмов вирусы выделены в особое царство «анавтобион», которое противостоит царству «автобион», объединяющему экоморфы клеточных организмов. Именно метаболическая несамостоятельность вирусов, эволюционно возникшая как результат глубокой всесторонней функционально-структурной интеграции их с живой клэткой, и обусловливает полную метаболическую инертность вирионов: как минимальные живые структуры, они экологически представляют собою лишь способ сохранения во внеклеточной среде и доставки к новому хозяину вирусных геномов, необходимых для обеспечения синтеза новых поколений вируса.
Антиэнтропические свойства вирионов соответствуют особенностям среды, в которой они существуют, и< прежде всего, тому факту, что большинство внутренних сред организма, обычно служащих ареной развития вирусов, содержат в тех или иных концентрациях нуклеазы и протеазы, оказывающие литическое действие на нуклеиново-белковые субстраты вирионов. Важнейшим.структурным антиэнтропическим фактором вирио-на является его белковый капсид, основное назначение которого состоит в предохранении содержащейся в вирионе нуклеиновой кислоты от инактивации ее присутствующими в среде нуклеазами.
Устойчивость вирусного капсида к действию протеолитических ферментов в значительной мере определяется его макроструктурой и только в меньшей степени зависит от первичной структуры капсидного белка. Сама по себе пептидная цепь вирусного белка в изолированном виде не имеет каких-либо особенностей в своей первичной, вторичной и третичной структуре и поэтому легко гидролизуется протеолитическими ферментами. Устойчивость к этим ферментам обусловлена макромолекулярной структурой белковых субъединиц капсида, при которой пептидные связи, непосредственно испытывающие на себе действие ферментов, оказываются для них недоступными. Примером может служить построенный по принципу спиральной симметрии вирион вируса табачной мозаики, в составе которого, благодаря специфической укладке пептидных цепей, их концы, откуда начинается гидролиз белка экзопротеазами, находятся, как правило, в глубине капсида. При нарушении целостности капсида вирион сразу же приобретает чувствительность к клеточным протеазам, что становится целесообразным при попадании его в клетку, где вирусный геном должен быть освобожден от капсида.
Эндоспоры бацилл и некоторых актиномицетов, как и вирионы вирусов, метаболически полностью инертны. Однако если в случае вирионов эта инертность обусловлена свойственной всем вирусам метаболической несамостоятельностью и сама по себе не связана с особенностями внешней среды, параметры которой, как правило, вполне пригодны для жизни, то в случае эндоспор метаболическая инертность представляет собою адаптацию, направленную именно на предохранение организма от губительного действия резко агрессивных факторов среды. И в этом смысле именно эндоспоры бацилл и актиномицетов служат непревзойденным образцом антиэнтропической стойкости, сохраняя свою жизнеспособность: при воздействии таких остро агрессивных факторов, как глубокое обезвоживание, колебания температуры в диапазоне от —250 до +170 °С, ионизирующие излучения, вакуум, действие концентрированных кислот и ферментов и др..
Аналогия в химической и макроструктурной специфике эндоспор микроорганизмов двух различных групп — бацилл и некоторых актиномицетов —. сама по себе представляет значительный интерес. Она проявляется, в частности, в том, что в обоих случаях эндоспоры имеют следующие общие особенности: 1) накапливают дипиколиновую кислоту; 2) имеют близкое суммарное содержание гуанина и цитозина в ДНК, причем в этом отношении Thermoactinomyces и Actinobifida существенно отличаются от других э у актиномицетов, у которых ГЦ-со-держание значительно выше; 3) образуют сходные структуры в оболочке, обнаруживая при этом аналогичную устойчивость к нагреванию и высушиванию. В этом следует, возможно, видеть не генетическую близость Thermoactinomyces и Actinobifida к Bacillaceae, а проявление особенностей определенной экоморфы, т.е. эндоспоры, конвергентно возникшей у бацилл и актиномицетов. Такой взгляд на рассмотренную аналогию эндоспор этих организмов кажется тем более допустимым в свете общеизвестных существенных морфологических различий их вегетативных форм.
Антиэнтропические свойства эндоспоры структурно обусловлены как ее химическим составом, отличным от такового вегетативной клетки, так и макроморфологией ее оболочки, т.е. определены на молекулярном и надмолекулярном уровнях.
На макроморфологическом уровне жизнестойкость метаболически неактивной эндоспоры обусловлена наличием сложно устроенной мощной оболочки, содержащей такие структурные элементы, которые отсутствуют у вегетативной клетки. Внутренняя, прилежащая к протопласту зона оболочки образована двумя слоями обычной клеточной мембраны, между которыми развивается специфичная для эндоспоры толстая прочная электронопрозрачная оболочка — кортекс, состоящая из пептидогликана уникальной структуры, возможно, сходной для всех или большинства спорообразующих бактерий и во многих отношениях отличной от структуры пептидогликанов вегетативных клеток. Внешняя зона оболочки в основном белковая, содержащая до 80% всех белков споры, причем эти белки отличаются необычно высоким содержанием цистеина и гидрофобных аминокислот и обнаруживают чрезвычайную устойчивость к различным литическим факторам.
Дипиколиновая кислота, содержащаяся в эндоспоре в виде дипико-лината кальция, составляет 10—15% сухой массы споры и локализована в протопласте; она обусловливает термостабильность зрелой споры, что показано экспериментально. Другой важный химический фактор жизнестойкости эндоспор — их сильная обезвоженность; с увеличением содержания воды в спорах терморезистентность их снижается.
Таким образом, примеры вирионов и эндоспор показывают, что возможность существования закрытых живых систем всецело обусловлена структурными адаптациями организмов на молекулярном и надмолекулярном уровнях. Эти адаптации позволяют нефункционирующей, метаболически инертной структурной системе организма в течение некоторого времени сохранять свою жизнеспособность, уклоняясь от активного, функционального контакта с окружающей средой, параметры которой в той или иной мере выходят за пределы эволюционно обусловленного диапазона, пригодного для метаболически активной жизни.
Следовательно, закрытые живые системы всегда представлены организмами, находящимися. в метаболически неактивном состоянии, т. е. в состоянии полного анабиоза.
Организменные и надорганизменные живые системы
Деление живых систем на организменные и надорганизменные отражает два основных типа их функциональной организации. Это деление по своей сути не имеет адекватных ему альтернатив: как функционально неделимая, генетически первичная живая система, имеющая собственную материализованную программу развития в форме генома, организм принципиально отличается от любых надорганизменных ассоциаций, программа развития которых всегда обеспечена только через посредство их подсистем, т. е. конкретных организмов, образующих ассоциацию. В силу этого, по сравнению с делением живых систем на организменные и надорганизменные, все подразделения последних могут иметь только подчиненное значение.
Поэтому, полностью разделяя мнение о том, что в иерархии уровней организации живого организменный уровень является основным, универсальным и первичным, автор считает, что при делении всего многообразия существующих живых систем по уровням их организации как первую ступень классификации следует выделять организменные и надорганизменные системы. Выделение же в качестве равнозначных по рангу трех основных уровней — орга-низменного, популяционного и экосистемного в свете сказанного представляется необоснованным.
Организменный и надорганизменный уровни функциональной организации живой системы наиболее существенно различаются 1) по информационной структуре живых систем, 2) по степени их делим >сти и 3) по степени иерархичности их функционально-структурно" организации.
Информационная структура организменных и надорганизменных живых систем принципиально различна. Все организмы характеризуются наличием централизованной собственной программы развития, основу которой составляет геном, содержащий определенный объем конкретной генетической информации. Централизация собственной программы развития определяет функционально-структурную целостность организма как неделимой единицы жизни. В надорганизменных системах программа развития не является централизованной и существует лишь как интегральный генофонд, образованный геномами конкретных организмов.
Эти различия организменных и надорганизменных систем в структуре собственной программы развития имеют фундаментальное значение в определении всех их прочих особенностей, и прежде всего степени их функционально-структурной интеграции, общий уровень которой в организменных системах всегда неизмеримо выше, чем в надорганизменных. В этом отношении между организменными и надорганизменными системами существуют качественные различия, определяемые мерой их делимости.
Делимость организменных и надорганизменных живых систем различна в принципе. Организмы всегда принципиально неделимы, что с неизбежностью вытекает уже из самого определения организма как элементарной живой системы, тогда как надорганизменные системы — популяции, колонии, экосистемы и т. п.,— напротив, в той или иной мере всегда делимы.
Если неделимость организма-монобионта в силу моноцентричности его генетической структуры всегда представляется достаточно очевидной и не требует каких-либо комментариев, то неделимость метабионтов и це-нометабионтов в свете известных фактов их вегетативного размножения на первый взгляд часто выглядит спорной. Достаточно вспомнить хотя бы, что,из фрагмента листа бегонии вырастает целое растение, растертая в ступке гидра превращается во множество новых гидр, а из тополя, разделив его на черенки, можно вырастить целую тополиную рощу.
В действительности, однако, подобные факты не противоречат идее неделимости организма и в то же время не свидетельствуют о том, что потенциально способный к вегетативному размножению родительский организм является составным. Вся суть дела заключается в том, что отделенные от родительского организма фрагменты сразу же начинают контактировать со средой как целостные организменные живые системы, что было не свойственно им до отделения от родительской живой системы, в пределах которой они проявляли себя лишь как безусловно несамостоятельные, в функциональном отношении односторонне специализированные структуры. В этом проявляется пластичность информационной структуры многоклеточных организмов, обусловленная тем, что каждая клетка многоклеточного тела имеет собственный геном, благодаря чему потенциально является зачатком целостной организменной системы. Поэтому механическая делимость тела, характерная для некоторых многоклеточных, не- означает функциональной делимости их как организменных систем: при насильственном, эктогенном делении тела такого организма возникающие фрагменты именно вследствие отделения их от родительской системы сразу же превращаются в дочерние организмы, т. е. вступает в действие эволюционно выработанный механизм вегетативного размножения с помощью простой фрагментации.
При этом, однако, для каждого многоклеточного организма, способного к вегетативному размножению посредством эктогенной фрагментации, существует определенный минимальный размер фрагмента, при котором он еще может взаимодействовать со средой как целостная организменная система. Например, если уже упомянутая бегония может размножаться даже фрагментами листьев, то для тополя минимальным жизнеспособным фрагментом является стеблевый черенок, т. е. кусочек стебля с небольшим числом листьев. Это указывает на эволюционную обусловленность допустимых уровней эктогенного фрагментирования и подтверждает правильность его интерпретации как способа вегетативного размножения: слишком мелкие фрагменты, размер которых ниже допустимого для данного вида, оказываются уже нежизнеспособными и здесь мы можем, следовательно, убедиться в том, что и в подобных случаях сохраняется обычная для всех организмов функциональная неделимость.
Таким образом, в любом случае вегетативного размножения мы можем констатировать принципиальную неделимость организма за пределами того эволюционно обусловленного уровня фрагментирования, который является экологически целесообразным для данного вида.
Иерархичность организации в той или иной мере свойственна всем живым системам. Однако если на организменном уровне она всегда хорошо выражена и составляет главное условие, обеспечивающее возможность структурного усложнения организмов, то в надорганиз-менных системах в некоторых случаях может быть выражена, напротив, очень слабо, примером чего могут служить хотя бы разного рода временные ассоциации животных, возникающие на относительно короткое время, в частности такие, как небольшие стайки мелких кочующих птиц.
Организменные живые системы
Организменные живые системы представляют собою филогенетически первичный, элементарный вариант живой системы, возникновение которого исторически соответствовало началу собственно биологической эволюции и само по себе явилось результатом длительного предбиологичес-кого развития.
Как автокаталитический процесс предбиологическая эволюция, судя по всему, имела в своей основе принцип гиперцикла, т. е. «принцип естественной самоорганизации, обусловливающий интеграцию и согласованную эволюцию системы функционально связанных самореплицирующихся единиц». Такими самореплицирующимися единицами на ранних стадиях предбиологической эволюции были, видимо, предшественники рибонуклеиновой кислоты — РНК-подобные полимеры, которые «в силу своих физических свойств наследуют способность к самовоспроизведению, а это является необходимой предпосылкой для систематической эволюции».
С возникновением процесса трансляции в этот автокаталитический гиперцикл были вовлечены аминокислоты, в результате чего он стал нук-леиново-пептидным, а в конечном счете, после достаточного удлинения пептидных цепей,— нуклеиново-белковым, соединив в себе, таким образом, оба важнейших химических компонента будущей организменной 'системы: информационное начало в виде нуклеиновой кислоты и структурно-каталитическое — в виде белка.
Не останавливаясь на деталях предбиологической эволюции, отделенной от нас почти 4 млрд. лет и происходившей в условиях, о которых мы не имеем достаточно ясного представления, отметим лишь, что на этом предбиологической, т. е. доорганизменном, этапе эволюционирующий функционально-структурный комплекс был представлен некоторой ассоциацией доорганизменных систем — макромолекул и простых надмолекулярных агрегатов. Интегративная эволюция подобных ассоциаций со
???. 1 ?????????? ????????? ???????? ? ???????? Isuasphaeraisua. ?? Pflug, ? ???????????.
временем привела к становлению первых простых организмов — прото-бионтов. Известные в настоящее время наиболее древние реальные палеонтологические свидетельства существования таких организмов обнаружены в отложениях, возраст которых приближается к 4 млрд. лет. Таковы, в частности, мельчайшие сфероподобные организмы диаметром около 30 мкм, найденные в Юго-Западной Гренландии в слоях возрастом около 3,8 млрд. лет и описанные как Isuasphaeraisua.
Таким образом, первичные организмы-протобионты возникли на основе длительной предбиологической интегративной эволюции некоторой ассоциации доорганизменных структур, организованных на уровне макромолекул и простых надмолекулярных агрегатов. Становление протобион-тов явилось непосредственным результатом акта структурной агрегации этих доорганизменных объектов молекулярного уровня, и прежде всего молекул нуклеиновых кислот и белков, воссоединение которых в единую автокаталитическую самореплицирующуюся информационно-структурную систему было, несомненно, самым главным, первым и решающим шагом на пути превращения ассоциации доорганизменных структур в организм.
Как функционально неделимые самореплицирующиеся информационно-структурные системы все первичные организмы имеют одну важнейшую общую черту: они элементарны по своей информационной структуре. Все они имеют только один информационный центр в форме генома, т. е. одну единую, неделимую материализованную генетическую программу развития, всегда централизованную в масштабах организменной живой системы. В соответствии с этим, принимая во внимание информационную неделимость подобных организмов, мы называем ихмонобионтами, а их единую, неделимую собственную программу развития — монобионтной.