Курсовая работа: Комплексный анализ рыбной отрасли

Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Преимуществом данной модели является то, что она позволяет идентифицировать какой либо финансовый или физический результат экономического процесса с линейной комбинацией наиболее релевантных факторов, которые определяет сам исследователь. Но вместе с тем эконометрический анализ обладает рядом недостатков. Во-первых, полученная факторная модель может быть незначимой, что определяется периодически при её построении, то есть она может и не отражать в достаточной мере исследуемый экономический процесс. Во-вторых, Велика вероятность того, что выбранные в качестве наиболее полно отражающих экономический процесс факторы будут системно его рассматривать.

Также для анализа отрасли можно использовать модель Леонтьева многоотраслевой экономики.

Для успешной работы промышленного предприятия необходима увязка объема и структуры, необходимых в процессе производства ресурсов, определяемых спросом на продукцию предприятия и его возможностями, обеспеченными производственными мощностями, трудовыми, финансовыми, энергетическими и другими производ­ственными фондами. В основе такой увязки лежат нормы расхода необходимых ресурсов. Таким образом, возникает балансовая за­дача расчета взаимосвязи между различными цехами или произ­водственными участками предприятия через выпуск и потребление продукции разного типа.

Эффективное ведение народного хозяйства предполагает наличие баланса между отдельными отраслями. Каждая от­расль при этом выступает двояко: с одной стороны, как про­изводитель некоторой продукции, а с другой — как потреби­тель продуктов, вырабатываемых другими отраслями.

Предположим, что вся производящая сфера народного хозяйства разбита на некоторое число n отраслей, каждая из которых производит свой однородный продукт, причем раз­ные отрасли производят разные продукты. Разумеется, та­кое представление об отрасли является в значительной мере абстракцией, так как в реальной экономике отрасль опреде­ляется не только названием выпускаемого продукта, но и ве­домственной принадлежностью своих предприятий (например, данному министерству, тресту и т. п.). Однако представление об отрасли в указанном выше смысле (как "чистой" отрасли) все же полезно, так как оно позволяет провести анализ сло­жившейся технологической структуры народного хозяйства, изучить функционирование народного хозяйства "в первом приближении".

Итак, предполагаем, что имеется n различных отраслей; О1 , …,Оn , каждая из которых производит свой продукт. В дальнейшем отрасль Оi будем коротко называть "i-я отрасль". В процессе производства своего продукта каждая отрасль нуж­дается в продукции других отраслей (производственное по­требление). Будем вести речь о некотором определенном про­межутке времени [Т0 , Т1 ] (обычно таким промежутком служит плановый год) и введем следующие обозначения:

xi — общий объем продукции отрасли i за данный проме­жуток времени — так называемый валовой выпуск отрасли г;

xij — объем продукции отрасли i, расходуемый отраслью j в процессе производства;

yi — объем продукции отрасли i, предназначенный к по­треблению в непроизводственной сфере, — объем конечного потребления.

Указанные величины можно свести в таблицу. Обратим наше внимание на элементы (xij ). Отрасль пред­ставлена двояким образом. Как элемент строки она выступа­ет в роли поставщика производимой ею продукции, а как эле­мент столбца — в роли потребителя продукции других отрас­лей экономической системы.

Производственное потребление

Конечное потребление

Валовой выпуск

x11 x12 x13….. x1 n

y1

x1

x11 x12 x13….. x1 n

y2

x2

x11 x12 x13….. x1 n

yn

x3

Балансовый характер этой таблицы выражается в том, что при любом i =1,...,п должно выполняться соотношение:

хi = xi 1 + xi 2 + xi 3 + xin + уi , (1)

означающее, что валовой выпуск хi расходуется на произ­водственное потребление, равное xi 1 + xi 2 + xi 3 + xin и непроиз­водственное потребление, равное уi . (1) это соотношения баланса. Таким образом, таблица отражает ба­ланс между производством и потреблением.

Преимуществом данной модели является то, что уравнения межотраслевого баланса можно использовать для целей планирования. В этом случае задача ставится так: для предстоящего планового периода [Т0 , Т1 ] задается вектор конечного потребления. Требуется определить вектор валового выпуска. Изложенный подход к решению ба­лансовых задач на макроуровне можно использовать при решении подобных задач на микроуровне, то есть на уровне отдельных пред­приятий.

Основная цель работы при использовании модели Леонтьева многоотраслевой экономики: исследование структуры и пропорции производ­ства и распределения производственных фондов предприятия. Используемый математический аппарат: математическое опи­сание балансовых производственных соотношений осуществля­ется с помощью системы линейных уравнений.

Метод “Дельфи” состоит в организации систематического сбора экспертных оценок, их математико-статистический обработки и последовательной корректировки экспертами своих оценок на основе результатов каждого цикла обработки. Его основные особенности: анонимность экспертов; многотуровая процедура опроса экспертов посредством их анкетирования; обеспечение экспертов информацией, включая и обмен ею между экспертами, после каждого тура опроса при сохранении анонимности оценок; обоснование ответов экспертов по запросу организаторов. Метод предназначен для получения относительно надежной информации в ситуациях ее острой недостаточности, например, в задачах долгосрочного научно-технического комплексного прогнозирования.

К-во Просмотров: 387
Бесплатно скачать Курсовая работа: Комплексный анализ рыбной отрасли