Курсовая работа: Метод наближеного обчислення коренів Програма

Зауваження 1. Розглядатимемо кількість змін знаків у даній упорядкованій скінченій послідовності дійсних чисел розуміючи під цим кількість пар сусідніх чисел цієї послідовності, які мають протилежні знаки. Наприклад, у послідовності –1,-2,6,3,-1,4 є 3 зміни знаків, а в послідовності –1,-2,-6,-3,-1,-4 є 0 змін знаків. Якщо які-небудь з чисел дорівнюють нулю, то при підрахунку числа змін знаків їх до уваги не беруть. Зауважимо, що коли перше й останнє числа і даної послідовності мають однакові знаки, то кількість змін знаків у послідовності парна; якщо ж і мають протилежні знаки, то кількість змін знаків – непарна. Справді, члени послідовності, які безпосередньо йдуть за кожною зміною знаків, мають знак, протилежний знаку тих членів, які передували зміні знаків. Отже, якщо остання зміна знаків має непарний номер, то числа послідовності, що йдуть за нею (і зокрема, ) матимуть знак, протилежний до .

Зауваження 2. Припускатимемо, що розглядуваний многочлена не має кратних коренів, оскільки завжди можна відокремити кратні множники.

Правило Декарта. Число додатних коренів многочлена з дійсними коефіцієнтами

дорівнює числу змін знаків у послідовності його коефіцієнтів або на парне число менше.

Зауваження 1. Правило Декарта можна застосувати і для оцінки числа від’ємних коренів з дійсними коефіцієнтами. Для цього в рівнянні

треба зробити заміну змінного . Зрозуміло, що число від’ємних коренів даного рівняння дорівнює числу додатних коренів рівняння , яке можна оцінити за правилом Декарта.

Якщо дане рівняння повне, тобто жодний коефіцієнт не дорівнює нулю, то число від’ємних коренів можна визначити і не виконуючи заміни . Справді, в цьому випадку число змін збережень знаків у ряді коефіцієнтів многочлена дорівнює числу збережень знаків у ряді коефіцієнтів многочлена . Отже, число від’ємних коренів повного рівняння дорівнює числу збережень знаків у ряді його коефіцієнтів або на парне число менше.

Зауваження 2. Коли наперед відомо, що всі корені даного рівняння дійсні, то правило Декарта дає точну відповідь на питання про число дійсних коренів, а саме: число додатних коренів дорівнює числу змін знаків у ряді коефіцієнтів многочлена , а число від’ємних коренів – числу змін знаків у ряді коефіцієнтів многочлена .

Справді, нехай, як і вище, і – число додатних і від’ємних коренів даного многочлена , -го степеня; і – число змін знаків у ряді коефіцієнтів многочлена і многочлена відповідно. З умови, що всі корені дійсні, випливає: . Якби рівняння були повними, то мали б також . Якщо ж деякі з коефіцієнтів многочлена (а тому й многочлена ) перетворюється в нуль, то числа і можуть тільки зменшитися. Тому в загальному випадку , звідки , або . Але з правила Декарта знаємо, що . Тому насправді .

На жаль, у більшості випадків наперед невідомо, чи всі корені рівняння дійсні. У зв’язку з цим правило Декарта, хоч і зручне з точки зору простоти застосування, не дає повної відповіді на питання про число дійсних коренів рівнянь з дійсними коефіцієнтами та їх розподіл між додатною і від’ємною півосями.

Практична частина

1. Опис програми

Програма складається з двох файлів – polinom.pas і polinom.dat. У файлі polinom.dat записується степень многочлена та його коефіціенти.

Описаняя процедур та функцій:

procedure znach – шукає межі додатніх та ві’ємних коренів;

function znachenie – знаходить значення многочлена в точці;

procedure delenie – відокремлює корені многочлена;

procedure korni – уточнює корені многочлена методом поділу відрізка навпіл;

2. Текст програми

Uses crt;

type ff=array[0..10] of real;

var f0,f1,f2,f3:ff;

prom,kpol:array[0..100] of real;

fil:text;

i,nf,k,iprom:integer;

n0,n1,n2,n3,b:real;

procedure znach(a100:ff ;var a1:ff); {ищет промижутки}

var i1:byte;

begin

if a100[0]<0 then

К-во Просмотров: 276
Бесплатно скачать Курсовая работа: Метод наближеного обчислення коренів Програма