Курсовая работа: Метод средних величин в изучении общественных явлений 2
где х1 , х2 ,..., хn - индивидуальные значения варьирующего признака (варианта);
n-число единиц совокупности.
Средняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес, называется взвешенной . В качестве весов выступают численности единиц в разных группах совокупности (в группу объединяют одинаковые варианты).
Средняя арифметическая взвешенная - средняя сгруппированных величин х1 ,х2 ,.., хn .- вычисляется по формуле:
¯х¯ар =(x1 f1 +x2 f2 +...+xn fn )/ (f1 +f2 +...+fn )=( ∑xf / ∑f),
где f1 , f2 ,..., fn - веса( частоты повторения одинаковых признаков);
∑xf- сумма произведений величины признаков на их частоты;
∑f- общая численность единиц совокупности.
В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (в процентах или долях единицы). Тогда формула средней арифметической взвешенной будет иметь вид:
‾хˉар =∑xd / ∑d ,
где d=f/∑f – частость, т.е. доля каждой частоты в общей сумме всех частот.
Если частоты посчитывают в долях (коэффициентах), то ∑d =1 и формула Средней арифметической взвешенной имеет вид:
‾хˉар =∑xd .
Часто приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним), т.е. среднюю из средних.
Средние из средних рассчитываются так же, как и средние из первоначальных значений признака. При этом средние, которые служат для исчисления на их основе общей средней, принимаются в качестве вариантов.
Вычисление средней арифметической взвешенной из групповых средних ‾х‾гр осуществляется по формуле:
‾хˉар =∑‾х‾гр f / ∑f ,
где f - число единиц в каждой группе.
Расчетная часть.
Задание.
1.Определить по первичным данным среднегодовую стоимость основных производственных фондов в расчете на одно предприятие.
Имеются выборочные данные (выборка 5% механическая о среднегодовой стоимости основных производственных фондов и выпуске продукции предприятия отрасли экономики за отчетный период, млн. руб).
№ п/п | Среднегодовая стоимость основных производственных фондов. |
1 | 27 |
2 | 46 |
3 | 33 |
4 | 35 |
5 | 41 |
6 | 42 |
7 | 53 |
8 | 55 |
9 | 60 |
10 | 46 |
11 | 39 |
12 | 45 |
13 | 57 |
14 | 56 |
15 | 36 |
16 | 47 |
17 | 20 |
18 | 29 |
19 | 26 |
20 | 49 |
21 | 38 |
22 | 37 |
23 | 56 |
24 | 49 |
25 | 37 |
26 | 33 |
27 | 55 |
28 | 44 |
29 | 41 |
30 | 28 |
Средняя арифметическая простая : ‾хˉар = (х1 +х2 +...+хn ) / n =∑х / n, где х1 , х2 ,..., хn - индивидуальные значения варьирующего признака (варианта); n-число единиц совокупности.
‾хˉар = (27 + 46 + 33 + 41 + 42 + 5 3+ 55 + 60 + 46 + 39 + 45 + 57 + 56 + 36 + 47 + 20+29+26+49+38+37+56+49+37+33+55+44+41+28)/30 = 1260 / 30=42.
2. Постройте статистический ряд распределения предприятий по среднегодовой стоимости основных производственных фондов, образовав четыре группы предприятий с равными интервалами, охарактеризовав их числом предприятий и их удельным весом.
Распределение предприятий по среднегодовой стоимости ОПФ.
Группы предприятий по стоимости ОПФ. | Число предприятий | Удельный вес группы предприятий в общем количестве предприятий. |
20-30 | 5 | 0,17 |
30-40 | 8 | 0,27 |
40-50 | 10 | 0,33 |
50-60 | 7 | 0,23 |
итого | 30 |
По ряду распределения рассчитайте среднегодовую стоимость ОПФ, взвешивая варианты: а) по числу предприятий; б)по удельному весу предприятий.
Группа предприятий по стоимости ОПФ, млн руб | Число предприятий, f | Удельный вес группы предприятий в общем количестве предприятий, d | Середина интервалов, х | x*f | x*d |
20-30 | 5 | 0,17 | 25 | 125 | 4,25 |
30-41 | 8 | 0,27 | 35 | 280 | 9,45 |
40-50 | 10 | 0,33 | 45 | 450 | 14,85 |
50-60 | 7 | 0,23 | 55 | 385 | 12,65 |
итого | 30 | 1 | 1240 | 41,2 |
Средняя арифметическая взвешенная по числу предприятий
‾хˉар = ∑xf / ∑f = 1240 / 30 = 41,3 ≈41.