Курсовая работа: Объемные наноструктурные материалы
В последние годы равноканальное угловое прессование явилось объектом многочисленных исследований в связи с возможностями практического использования объемных наноструктурных металлов и сплавов. Последние разработки направлены на увеличение геометрических размеров образцов и заготовок диаметром до 60 мм и длиной до 200 мм (рисунок 3), получение длинномерных заготовок, формирование наноструктур в труднодеформируемых и малопластичных металлах и сплавах.
Рисунок 3 – Объемные заготовки наноструктурного титана
Большое внимание уделяется также развитию других методов интенсивной пластической деформации – всесторонней ковке, специальной прокатке и др., с целью повышения эффективности процесса.
наноструктура атомный кристаллический нановолокно
2. ОСОБЕННОСТИ МОДЕЛЕЙ НАНОСТРУКТУР
Наноструктурные материалы, вследствие очень малого размера зерен, содержат в структуре большое количество границ зерен, которые играют определяющую роль в формировании их необычных физических и механических свойств. Вследствие этого в проводимых экспериментальных исследованиях и разрабатываемых структурных моделях наноматериалов границы зерен занимают центральное место.
Уже в первых работах, выполненных X. Гляйтером с сотрудниками, был установлен ряд особенностей структуры нанокристаллических материалов, полученных газовой конденсацией атомных кластеров с последующим их компактированием. Это, прежде всего, пониженная плотность полученных нанокристаллов и присутствие специфической «зернограничной фазы», обнаруженное с появлением дополнительных пиков при мессбауэровских исследованиях. На основании проведенных экспериментов, включая компьютерное моделирование, была предложена структурная модель нанокристаллического материала, состоящего из атомов одного сорта (рисунок 4).
Рисунок 4 – Атомная модель наноструктурного материала
В соответствии с этой моделью такой нанокристалл состоит из двух структурных компонент: кристаллитов зерен (атомы представлены светлыми кружками) и зернограничных областей (черные кружки). Атомная структура всех кристаллитов совершенна и определяется только их кристаллографической ориентацией. В то же время зернограничные области, где соединяются соседние кристаллиты, характеризуются пониженной атомной плотностью и измененными межатомными расстояниями.
Модель Гляйтера дала мощный толчок исследованиям структуры нанокристаллов и поиску их необычных свойств. Вместе с тем, в последующих исследованиях были выявлены и ее важные недостатки. Во-первых, в согласии с высокоразрешающей электронной микроскопией границы зерен являются значительно более узкими, чем это предсказывается моделью (см. рисунок 4) и их ширина обычно не превышает 1–2 межатомных расстояния. Во-вторых, атомно-кристаллическая решетка в нанокристаллах не является совершенной и обычно, как в случае ИПД наноматериалов, упруго искажена. Более того, в настоящее время становится очевидным, что метод получения наноструктурных материалов играет весьма важную роль в формировании их структуры и свойств. Экспериментальные исследования, проведенные с использованием различных, часто взаимно дополняющих методов, каковыми являются просвечивающая, включая высокоразрешающую, электронная микроскопия, рентгеноструктурный анализ, мессбауэровская спектроскопия, дифференциальная сканирующая калориметрия, свидетельствуют, что в наноструктурных ИПД металлах и сплавах границы зерен носят неравновесный характер, обусловленный присутствием зернограничных дефектов с высокой плотностью.
Представления о неравновесных границах были введены в научную литературу в 1980-х годах, базируясь на исследованиях взаимодействия решеточных дислокации и границ зерен.
3. НЕОБЫЧНЫЕ СВОЙСТВА НСМ И ОБЛАСТЬ ПРИМЕНЕНИЯ
Специфические микроструктуры в объемных наноматериалах определяют их необычные свойства, многие из которых уникальны и весьма привлекательны для практического использования. Эти специфические качества связаны с изменением некоторых фундаментальных свойств материала при уменьшении размера частиц или зерна, а также с изменением соотношения некоторых объемных и поверхностных свойств.
К уникальным особенностям наноматериалов относятся отличия их температур плавления и размеров кристаллических решеток от соответствующих величин в материалах с обычной структурой. В связи с этим возникает вопрос о справедливости использования термина «постоянные решетки», применительно к размерам решетки.
С уменьшением размера частиц растет их поверхностная энергия. В результате изменяется (снижается) температура плавления частицы.
Установлено также уменьшение параметра решетки для металлов и некоторых соединений при уменьшении размера частиц. Так, при уменьшении диаметра частиц алюминия от 20 до 6 нм период решетки уменьшается примерно на 1,5%. Размер, ниже которого наблюдается уменьшение параметра решетки, различен для разных металлов и соединений.
Наноструктурные металлы и сплавы могут обладать высокой коррозионной стойкостью. В частности, эксперименты демонстрируют возможность получения обычных углеродистых сталей в наноструктурном состоянии с более высокими коррозионными свойствами, чем у специальных нержавеющих сталей. Результаты недавних исследований показывают возможность значительного повышения физических свойств исследуемых материалов; наноструктурный нитинол демонстрирует исключительную сверхупругость и эффект памяти формы; в нанокомпозите Сu – A12 О3 наблюдается сочетание высокой термостабильности и электропроводимости; наноструктурные магнитотвердые сплавы (систем Fe – Nb – B, Co – Pt и др.) демонстрируют рекордные магнитные гистерезисные свойства, а магнитомягкие наноматериалы проявляют очень низкую магнитную проницаемость. Обнаружены и изучаются также аномальные оптические свойства наноструктурных металлов и полупроводников.
Однако особый интерес представляют механические свойства объемных наноструктурных материалов. Как свидетельствуют теоретические оценки, с точки зрения механического поведения формирование наноструктур в различных металлах и сплавах может привести к высокопрочному состоянию в соответствии с соотношением Холла-Петча, а также к появлению низкотемпературной или высокоскоростной сверхпластичности. Реализация этих возможностей имеет непосредственное значение для разработки новых высокопрочных и износостойких материалов, перспективных сверхпластичных сплавов, металлов с высокой усталостной прочностью. Все это вызвало большой интерес среди исследователей прочности и пластичности материалов к получению больших объемных образцов с наноструктурой, для последующих механических испытаний.
Вместе с тем, как отмечалось выше, существуют нерешенные проблемы в получении таких наноматериалов специальными методами порошковой металлургии – газовой конденсацией или шаровым размолом, в связи с сохранением в них при компактировании некоторой остаточной пористости и наличием дополнительных трудностей при приготовлении массивных образцов. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых исследованиях обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ наблюдали в этом случае упрочнение, хотя наклон кривых был меньше, по сравнению с соотношением Холла-Петча. При растяжении эти НСМ оказались очень хрупкими, несмотря на высокую твердость.
Многие из этих проблем удалось преодолеть при создании наноструктур в крупнокристаллических материалах, за счет использования методов ИПД. Полученные образцы позволили начать систематические исследования механических свойств на растяжение и сжатие во многих металлических материалах, включая промышленные сплавы. Было продемонстрировано, что в полученных наноструктурных образцах могут наблюдаться очень высокие прочностные свойства. Более того, полученные материалы часто проявляют сверхпластичность при относительно низких температурах и могут демонстрировать высокоскоростную сверхпластичность. Недавние исследования показали также новые возможности повышения механических свойств в наноструктурных сплавах с метастабильной структурой и фазовым составом. Формирование метастабильных состояний позволяет получить особо прочные материалы после последующих отжигов, что связано не только с наличием очень мелкого зерна, но также со специфической дефектной структурой границ зерен, морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д.. В связи с этим становится актуальной задача комплексного исследования влияния структурных особенностей наноматериалов на их механическое поведение.
Например, наноструктурная Сu, полученная РКУ прессованием, в сравнении с хорошо отожженным крупнозернистым состоянием, проявляет два наиболее существенных различия: во-первых, в несколько раз более высокое значение предела текучести, превышающее 400 МПа, и, во-вторых, значительно менее выраженное деформационное упрочнение на стадии пластического течения. Короткий отжиг не приводит к заметному росту зерен, однако ведет к возврату дефектной структуры их границ, выраженному в резком уменьшении внутренних напряжений. Несмотря на аналогичный размер зерен, имеется весьма существенная разница деформационного поведения в этих двух состояниях. После кратковременного отжига вид кривой «истинное напряжение – деформация» становится похожим на вид кривой, соответствующей крупнокристаллической Сu. Этот результат очень важен и показывает, что на прочностные свойства наноструктурных материалов может влиять не только средний размер зерна, но и дефектная структура границ зерен.
Исходная крупнозернистая Сuс размером зерен около 30 мкм проявляет типичное поведение (рисунок 5, кривая 7), связанное с низким пределом упругости, незначительным деформационным упрочнением и высокой пластичностью, связанное с низким пределом упругости, незначительным деформационным упрочнением и высокой пластичностью.
Рисунок 5 – Истинные кривые деформации для наноструктурных материалов
После холодной прокатки наблюдается существенное повышение прочности Си, но значительно снижается пластичность (рисунок 5, кривая 2). При этом, чем больше величина деформации при прокатке, тем выше прочность, но ниже пластичность. Эта тенденция сохраняется для Сu, подвергнутой двум проходам РКУ прессования, где величина деформации близка к 2 (рисунок 5, кривая 3). Однако ситуация принципиально меняется для Сu, подвергнутой интенсивной деформации с числом проходов РКУ прессования, равным 16 (рисунок 5, кривая 4). Здесь заметен не только дальнейший рост прочности, достигающей рекордных значений для Сu, но и значительное увеличение пластичности.
Аналогичная закономерность была обнаружена в Ti, подвергнутом интенсивной пластической деформации кручением (рисунок 5 б). После деформации кручением в один оборот, когда истинная логарифмическая деформация близка к единице, и затем деформирования растяжением при 250°С, наблюдается упрочнение.
Однако при этом пластичность падает (рисунок 5 б, кривая 6) по сравнению с исходным крупнокристаллическим состоянием со средним размером зерен 20 мкм (рисунок 5 б, кривая 5). Дальнейшее увеличение степени интенсивной деформации (до 5 поворотов) обеспечивает достижение рекордной прочности для Ti (рисунок 5 б, кривая 7) с пределом прочности около 1000 ГПа, сравнимым со значением, характерным для наиболее прочных Ti сплавов. При этом происходит и рост пластичности, когда удлинение до разрыва превышает даже максимальное удлинение для исходного отожженного образца.