Курсовая работа: Основы физики лазеров

Первоначально способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики (ныне академики) Н.Г. Басов и А.М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его «молекулярным генератором» (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом. В 1954 г. молекулярный генератор, названный в скоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара — в Физическом институте имени П.Н. Лебедева Академии наук СССР (группой под руководством Н.Г. Басова и А.М. Прохорова) и в Колумбийском университете в США (группой под руководством Ч. Таунса). В последствии от термина «мазер» и произошел термин «лазер» в результате замены буквы «М» (начальная буква слова Microwave – микроволновой) буквой «L» (начальная буква слова Light – свет)[1] .

В основе работы, как мазера, так и лазера лежит один и тот же принцип – принцип, сформулированный в 1951 г. В.А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его назвали квантовой радиофизикой, а позднее стали называть квантовой электроникой.

Спустя десять лет после создания мазера, в 1964 г. на церемонии, посвященной вручению Нобелевской премии, академик А.М. Прохоров сказал: «Казалось бы, что после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы в оптическом диапазоне. Однако этого не случилось. Они были созданы только через 5-6 лет. Чем это объясняется? Здесь были две трудности. Первая трудность заключалась в том, что тогда не были предложены резонаторы для оптического диапазона длин волн, и вторая – не были предложены конкретные системы и методы получения инверсной заселенности в оптическом диапазоне». Упомянутые А.М. Прохоровым шесть лет действительно были заполнены теми исследованиями, которые позволили в конечном счете перейти от мазера к лазеру. В 1955 г. Н.Г. Басов и А.М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г. Н.Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же 1957 г. В.А. Фабрикант и Ф.А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количеств водорода и гелия. В 1958 г. А.М. Прохоров и независимо от него американские физики А. Шавлов и Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; они (а также американец Д. Дикке) выдвинули идею применения в оптическом диапазоне не объемных (как в СВЧ диапазоне), а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки (сохранены торцовые отражатели, фиксирующие в пространстве ось резонатора) и линейные размеры резонатора выбраны большими по сравнению с длиной волны излучения. В 1959 г. вышла в свет работа Н.Г. Басова, Б.М. Вула, Ю.М. Попова с теоретическим обоснованием идеи полупроводниковых квантовых генераторов и анализом условий их создания[2] . Наконец, в 1960 г. появилась обстоятельная статья Н.Г. Басова, О.Н. Крохина, Ю.М. Попова, в которой были всесторонне рассмотрены принципы создания и теория квантовых генераторов и усилителей в инфракрасном и видимом диапазонах. В конце статьи авторы писали: «Отсутствие принципиальных ограничений позволяет надеяться на то, что в ближайшее время будут созданы генераторы и усилители в инфракрасном и оптическом диапазоне волн»[3] .

Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого «оптического мазера» – лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого имели серебряное покрытие (эти грани играли роль зеркал резонатора), периодически облучался зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика. В том же 1960 г. американским физикам А. Джавану, В. Беннету, Д. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В.А. Фабриканта и Ф.А. Бутаевой, выполненными в 1957 г. начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях.

Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры. Так начался новый, «лазерный» период оптики.

2. Оптические квантовые генераторы – уникальные источники света

2.1. Индуцированное излучение

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора — оптического квантового генератора или лазера. Эти открытия совершили прорыв в области оптической физики.

В основу лазеров было положено явление индуцированного излучения, существование которого было предсказано Эйнштейном в 1917 году. По Эйнштейну, наряду с процессами обычного излучения и резонансного поглощения существует третий процесс - вынужденное (индуцированное) излучение. Свет резонансной частоты, то есть той частоты, которую атомы способны поглощать, переходя на так называемые высшие энергетические уровни, должен вызывать свечение атомов, уже находящихся на этих уровнях, если таковые имеются в среде.

Характерная особенность этого излучения заключается в том, что испускаемый свет неотличим от вынуждающего света, то есть совпадает с последним по частоте, по фазе, поляризации и направлению распространения. Это означает, что вынужденное излучение добавляет в световой пучок точно такие же кванты света, какие уводит из него резонансное поглощение.

Атомы среды могут поглощать свет, находясь на нижнем энергетическом уровне, излучают же они на верхних уровнях. Отсюда следует, что при большом количестве атомов на нижних уровнях (по крайней мере большем, чем количество атомов на верхних уровнях), свет, проходя через среду, будет ослабляться. Напротив, если число атомов на верхних уровнях больше числа невозбужденных, то свет, пройдя через данную среду, усилится. Это значит, что в данной среде преобладает индуцированное излучение.

Квантовые усилители и генераторы света, в основу которых положено описанное явление, работают по схеме, схематично изображенной на рис.1. Пространство между зеркалами 1 и 2 заполнено активной средой, то есть средой, содержащей большее количество возбужденных атомов (атомов, находящихся на верхних энергетических уровнях), чем невозбужденных. Среда усиливает проходящий через неё свет за счет индуцированного излучения, начало которому даёт спонтанное излучение одного из атомов. Значительное усиление света достигается тогда, когда угол a очень мал. Тогда свет испытывает множество отражений, и все лучи накладываются, усиливая друг друга. На рис. 1 этому соответствует постепенное утолщение стрелки[4] .

1


a

2

Рис. 1. Схема возникновения индуцированного излучения (угол a сильно преувеличен)

2.2. Принцип действия лазеров

Лазерное излучение - есть свечение объектов при нормальных температурах. Но обычных условиях большинство атомов находятся в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощенной энергии волны часть атомов возбуждается, то есть переходит в высшее энергетическое состояние. При этом от светового пучка отнимается некоторая энергия:

hv=E2 -E1 ,

где hv - величина, соответствующая количеству потраченной энергии,

E2 - энергия высшего энергетического уровня,

E1 - энергия низшего энергетического уровня.

На рисунке 2(а) представлены невозбужденный атом и электромагнитная волна в виде красной стрелки. Атом находится в нижнем энергетическом состоянии. На рисунке 2(б) изображён возбужденный атом, поглотивший энергию. Возбужденный атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении.


а б в

Рис. 2. Принцип действия лазеров

а - поглощение энергии и возбуждение атома; б - атом поглотивший энергию; в - испускание атомом фотона

Возбужденный атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении.

Теперь представим, что каким-либо способом мы возбудили большую часть атомов среды. Тогда при прохождении через вещество электромагнитной волны с частотой

,

где v - частота волны,

Е2 - Е1 - разница энергий высшего и низшего уровней,

h - длина волны.

эта волна будет не ослабляться, а напротив, усиливаться за счёт индуцированного излучения. Под её воздействием атомы согласованно переходят в низшие энергетические состояния, излучая волны, совпадающие по частоте и фазе с падающей волной. Это показано на рисунке 2(в)[5] .

2.3. Основные свойства лазерного луча

К-во Просмотров: 289
Бесплатно скачать Курсовая работа: Основы физики лазеров