Курсовая работа: Основы теории измерений

Измерения в этой шкале не только упорядочены по рангу, но и разделены определёнными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. Например, температура тела спортсмена А. во время выполнения упражнения оказалась равной 39,0* С, спортсмена В. -39,5* С.

Обработка результатов измерений в интервальной шкале позволяет определить, «на сколько больше» один объект по сравнению с другим (в приведённом выше примере=0,5*). Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.

3. 4. Шкала отношений

В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое количество может быть равно нулю.

В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Так, сила в 600 Н, равная 6,6.с, во столько же раз больше основной единицы измерения – одного ньютона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.

Таблица «Характеристики и примеры шкал измерений»

(по Дж. Гласу, Дж. Стэнли)

Шкала Характеристики Математические методы Примеры
Наименований Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, ещё ничего не говорит об их свойствах, за исключением того, что они различаются

Число случаев

Мода

Тетрахорические и полихорические коэффициенты корреляции

Номер спортсмена

Амплуа

Порядка

Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше»

Медиана

Ранговая корреляция

Ранговые критерии

Проверка гипотез непараметрической статистикой

Результаты ранжирования спортсменов в тесте
Интервалов

Есть единица измерений, при помощи которой объекты можно упорядочить, приписать им числа так, чтобы равные разностиотражали разные различия в количестве измеряемого свойства

Все методы статистики, кроме определения отношений

Температура тела

Суставные углы

Отношений Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства Все методы статистики

Длина тела

Масса тела

Сила движений

Ускорение

4. Точность измерений

4. 1. Основные понятия

В спортивной практике наибольшее распространение получили два вида измерений. Измерения, когда искомое значение величины находится непосредственно из опытных данных, являются прямыми. Например, регистрация скорости бега, дальности метаний, величины усилий и т. п. – это всё прямые измерения.

Косвенными называют измерения, при которых искомое значение величины находят на основании зависимости между этой величиной и величинами, подвергаемыми измерению. Например, между скоростью ведения мяча футболистом (V) и затратами энергии (Е) существует зависимость типа:

y = 1,683+1,322х

где y – затраты энергии в ккал;

х – скорость ведения мяча. Если спортсмен ведёт мяч с V=6 м/с, то Е=9,6 ккал/мин.

Прямым способом измерить МПК сложно, а время бега – легко. Поэтому время бега измеряют, а МПК – рассчитывают.

Следует помнить, что никакое измерение не может быть выполнено абсолютно точно и результат измерения всегда содержит в себе ошибку. Необходимо стремиться к тому, чтобы эта ошибка была разумно минимальна. Напомним, что результаты контроля являются основой для планирования нагрузок. Поэтому точно измерили – точно спланировали и наоборот. Знание точности измерений – обязательное условие, и поэтому в задачу измерений входит не только нахождение самой величины, но и оценка допущенных при этом погрешностей (ошибок).

4. 2. Систематические и случайные ошибки измерений

К-во Просмотров: 533
Бесплатно скачать Курсовая работа: Основы теории измерений