Курсовая работа: Основы теории измерений
Измерения в этой шкале не только упорядочены по рангу, но и разделены определёнными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. Например, температура тела спортсмена А. во время выполнения упражнения оказалась равной 39,0* С, спортсмена В. -39,5* С.
Обработка результатов измерений в интервальной шкале позволяет определить, «на сколько больше» один объект по сравнению с другим (в приведённом выше примере=0,5*). Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.
3. 4. Шкала отношений
В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое количество может быть равно нулю.
В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Так, сила в 600 Н, равная 6,6.с, во столько же раз больше основной единицы измерения – одного ньютона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.
Таблица «Характеристики и примеры шкал измерений»
(по Дж. Гласу, Дж. Стэнли)
Шкала | Характеристики | Математические методы | Примеры |
Наименований | Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, ещё ничего не говорит об их свойствах, за исключением того, что они различаются |
Число случаев Мода Тетрахорические и полихорические коэффициенты корреляции |
Номер спортсмена Амплуа |
Порядка |
Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше» |
Медиана Ранговая корреляция Ранговые критерии Проверка гипотез непараметрической статистикой | Результаты ранжирования спортсменов в тесте |
Интервалов |
Есть единица измерений, при помощи которой объекты можно упорядочить, приписать им числа так, чтобы равные разностиотражали разные различия в количестве измеряемого свойства | Все методы статистики, кроме определения отношений |
Температура тела Суставные углы |
Отношений | Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства | Все методы статистики |
Длина тела Масса тела Сила движений Ускорение |
4. Точность измерений
4. 1. Основные понятия
В спортивной практике наибольшее распространение получили два вида измерений. Измерения, когда искомое значение величины находится непосредственно из опытных данных, являются прямыми. Например, регистрация скорости бега, дальности метаний, величины усилий и т. п. – это всё прямые измерения.
Косвенными называют измерения, при которых искомое значение величины находят на основании зависимости между этой величиной и величинами, подвергаемыми измерению. Например, между скоростью ведения мяча футболистом (V) и затратами энергии (Е) существует зависимость типа:
y = 1,683+1,322х |
где y – затраты энергии в ккал;
х – скорость ведения мяча. Если спортсмен ведёт мяч с V=6 м/с, то Е=9,6 ккал/мин.
Прямым способом измерить МПК сложно, а время бега – легко. Поэтому время бега измеряют, а МПК – рассчитывают.
Следует помнить, что никакое измерение не может быть выполнено абсолютно точно и результат измерения всегда содержит в себе ошибку. Необходимо стремиться к тому, чтобы эта ошибка была разумно минимальна. Напомним, что результаты контроля являются основой для планирования нагрузок. Поэтому точно измерили – точно спланировали и наоборот. Знание точности измерений – обязательное условие, и поэтому в задачу измерений входит не только нахождение самой величины, но и оценка допущенных при этом погрешностей (ошибок).
4. 2. Систематические и случайные ошибки измерений