Курсовая работа: Пластинчатые теплообменники
Были случаи, когда теплообменник терял до 50-70% тепловой эффективности за 3-6 недель. На этом предприятии эксплуатируется достаточно большой парк – более 50 единиц – водо-водяных ПТО различных фирм производителей («Альфа-Лаваль Поток», «РИДАН», «Машим-пекс», «Funke») единичной тепловой мощностью 0,3-8,0 МВт. Водоподогреватели установлены в отопительных котельных, расположенных в двух городах Нижегородской области: г. Дзержинск и г. Сергач.
В 2001-2002 гг. в указанных городах с привлечением инвестиций ОАО «ГАЗПРОМ» была проведена масштабная реконструкция систем теплоснабжения, в результате которой взамен старых отопительных котельных с чугунно-секционными котлами («Энергия, «Тула» и др.) были построены и реконструированы: в г. Дзержинск – 18 котельных общей установленной мощностью 158,5 МВт, в г. Сергач – 8 котельных общей установленной мощностью 32,5 МВт. В г. Дзержинске, кроме того, произведена замена 100% тепловых сетей от реконструированных котельных суммарной протяженностью 36 км. Все котельные в настоящее время работают в автоматическом режиме (без постоянного присутствия обслуживающего персонала). Котельные выполнены по единой двухконтурной технологической схеме (см. рис. 2). Пластинчатые теплообменники отопления (2 шт. по 50% производительности каждый) выполняют функцию разделения контуров. Расчетный температурный график: 95/70 °С – по сетевому контуру, 110/80 °С – по котловому контуру.
Внутренний (котловой) контур заполнен химически очищенной водой с жесткостью не более 200 мкг•экв/кг. При отсутствии утечек во внутреннем контуре и исправной работе системы компенсации температурных расширений, выполненной на базе мембранных расширительных баков (МРБ), подпитка контура практически не требуется, что обеспечивает отсутствие накипеобразования и коррозии на поверхностях нагрева котлов и теплообменников (со стороны котлового контура).
Внешний (сетевой) контур подпитывается водой, в которую непрерывно дозируется реагент-ингибитор накипиобразования и коррозии (марки «Аква-М» или ОЭДФ-Zn). Дозирование осуществляется установкой СДР-5 (изготовитель – ОАО «Аква-Хим», г. Тверь).
Непосредственно в процессе пуска в эксплуатацию и в последующих отопительных сезонах 2001-2003 гг. наше предприятие столкнулось с серьезными трудностями, выразившимися в невозможности передачи требуемого количества тепла через ПТО и, следовательно, в невозможности поддержания проектного температурного
графика в тепловых сетях ряда котельных при низких температурах наружного воздуха – приблизительно при -15 °С и ниже. Как показало проведенное обследование, причина заключалась в интенсивном загрязнении поверхности нагрева теплообменников по сетевой стороне продуктами коррозии железа (г. Дзержинск) и накипью (г. Сергач). В качестве иллюстрации на рис. 3 – представлена фотография образца отложений, извлеченного из теплообменника в г. Сергач, на рис. 4 –фотография пластины, извлеченной из теплообменника в г. Дзержинске.
Загрязнение теплообменников также оказывало негативное влияние на гидравлический режим тепловых сетей. При расчетном гидравлическом сопротивлении теплообменников 0,4 кгс/см2, фактическое его значение достигало 2,0-2,5 кгс/см2, после чего теплообменники поочередно подвергались разборке и механической чистке. Механическая очистка пластинчатого теплообменника оказалась сложной и длительной по времени операцией (очистка 1 теплообменника бригадой из 3-х человек занимала 6-8 ч.), что в условиях отопительного сезона приводило к ограничению подачи тепла потребителям.
Ситуация усугублялась также тем обстоятельством, что из-за большого расхода подпитки (до 10 раз больше норматива) длительное время не удавалось наладить надежное функционирование систем реагентной водоподготовки. Качество сетевой воды в первый год эксплуатации не отвечало никаким нормам и на ряде котельных было таким, что теплообменники загрязнялись в течение 2-3 недель.
Нескончаемый поток жалоб от потребителей поставил под сомнение саму идею реконструкции котельных, в ходе которой производилась замена устаревшего оборудования – чугунно-секционных котлов на современные автоматизированные жаротрубные котлоагрегаты, пластинчатые теплообменники и пр.
4. Опыт борьбы с загрязнениями пластинчатых теплообменников
В сложившихся условиях с февраля 2002 г. на предприятии была развернута планомерная работа по анализу причин нарушений в работе теплообменников и разработке мероприятий по стабилизации теплового и гидравлического режимов отпуска тепловой энергии.
На первом этапе был организован непрерывный мониторинг химического состава исходной и сетевой воды по основным показателям (прозрачность по шрифту, содержание железа, рН, жесткость, концентрация реагента и др.), налажен контроль состояния загрязненности теплообменников по простейшему показателю - перепаду давления.
Анализ полученной информации по результатам работы в отопительных сезонах 2001 -02 гг. и 2002-03 гг. позволил сделать выводы об истинных причинах, приводящих к быстрому загрязнению пластинчатых теплообменников. В г. Сергач исходная, а, следовательно, и сетевая вода, имеет высокую жесткость (15-20 мг•экв/кг). Этим определяется ее высокая склонность к накипеобразованию и сравнительно низкая коррозионная агрессивность (индекс стабильности положительный). При этом исходная вода прозрачна, не содержит большого количества механических примесей и железа. Вследствие низкой интенсивности процессов коррозии трубопроводы теплосетей и внутренних систем отопления не загрязнены большим количеством железо-окисных отложений, скопившихся за предыдущий период эксплуатации.
Поэтому, отложения на поверхностях нагрева твердые, от светло-серого до коричневого цвета, состоят на 80% из карбоната кальция с вкраплениями твердых частиц продуктов коррозии железа. Толщина слоя отложений достигала 0,6-0,8 мм. Скорость образования отложений достаточно высока - за 1,5-2 месяца достигался критический перепад давления по сетевой стороне - 2,5 кгс/см2.
Ситуация в г. Дзержинске кардинальным образом отличалась. Исходная водопроводная вода в г. Дзержинске - относительно мягкая (общая жесткость 4,0-5,0 (мг•экв/кг), периодически наблюдается значительное превышение санитарных норм по содержанию железа (до 2-3 мг/кг). При рН = 6,5-7,5 и нагревании до рабочей температуры в теплосети такая вода сохраняет отрицательный индекс стабильности, т.е. является коррозионно-агрессивной (при невысокой склонности к накипеобразованию).
За предшествующий период эксплуатации (более 30 лет) в системах теплопотребления абонентов и теплосетях скопилось огромное количество продуктов коррозии железа и других механических примесей. К этому необходимо добавить то обстоятельство, что жилищно-эксплуатационные организации традиционно (по крайней мере, предшествующие 5-10 лет) практически не готовили жилой фонд к зиме, т.е. такие важные операции, как опрессовка и промывка внутренних систем отопления (ВСО) практически не проводились.
После ввода в эксплуатацию реконструированных котельных, наладки гидравлического режима теплосетей, поток загрязнений из ВСО хлынул в сеть, что привело к быстрому загрязнению пластинчатых теплообменников.
Типичная динамика изменения прозрачности сетевой воды в системах теплоснабжения г. Дзержинска представлена на рис. 5.
Отложения на поверхностях нагрева ПТО в г. Дзержинске имеют ярко выраженный железо-окисный характер: рыжего цвета; слой, прилегающий к поверхности пластин - твердый, прочно сцеплен с металлом пластины; наружный слой - рыхлый, при высыхании образует тонкодисперсную пыль. Средний состав отложений: оксиды железа - 80-90%; карбонат кальция - 5-10%; оксид кремния и др. - 5-10%.
Эквивалентная толщина слоя отложений -0,3-0,7 мм.
На основании анализа всей имеющейся информации были разработаны мероприятия по стабилизации работы систем теплоснабжения и теплообменного оборудования котельных г. Дзержинска и г. Сергач с учетом местной специфики. Мероприятия сведены в табл. 1.
Реализация мероприятий, перечисленных в табл. 1, планомерно проводилась в период с 2002 по 2004 гг. и в настоящее время в основном закончена. Так, в отопительном сезоне 2002 - 2003 гг. были полностью завершены наладочные работы на тепловых сетях всех 18 котельных г. Дзержинска. Начиная с 2002 г. в летний период стали проводиться гидравлические испытания теплотрасс на прочность и плотность, что позволило существенно сократить объем подпиточной воды. К окончанию отопительного сезона 2003 -2004 гг. удалось снизить расход подпиточной воды по котельным г. Дзержинска в 2,5 раза, по котельным г. Сергач в 3 раза.
5. Опыт проведения химических промывок ПТО
В 2002-2003 гг. на предприятии отлаживались процедуры проведения химических промывок ПТО. Были сконструированы и изготовлены 2 установки для химической промывки оборудования (рис. 6). Весь парк теплообменников оснащен патрубками Dy 40 с запорной арматурой для присоединения промывочной установки. Разработаны и внедрены технологии промывки с использованием различных моющих составов.
Сложность подбора реагентов заключалась в том, что необходимо было подобрать реагент комбинированного действия, одинаково эффективно отмывающий карбонатную накипь и оксиды железа. Промывочный раствор также должен содержать ингибиторы, предохраняющие металлические поверхности нагрева теплообменников (нержавеющая сталь AISI 316) и подводящие патрубки от коррозионного износа при промывках. На основании полученного опыта можно рекомендовать к применению следующие химреагенты комбинированного действия (см. табл. 2).
К недостаткам метода безразборной химической промывки ПТО следует отнести:
1. Сравнительно высокую стоимость, выражающуюся в затратах на реагенты и оплату труда квалифицированного персонала. По нашим оценкам, себестоимость химической промывки одного ПТО тепловой мощностью 4-6 МВт составляет 6-10 тыс. руб.
2. Большие затраты времени и трудозатраты. Химическая промывка одного ПТО со всеми сопутствующими процедурами (транспортировка установки, подключение/отключение, нейтрализация отработанного раствора, отмывка и т.д.) занимает по времени 1 рабочую смену (8 часов) при численности бригады 2-3 человека, т.е. 3x8 = 24 чел/ч.
3. Сложности, возникающие при утилизации отработанного промывочного раствора.