Курсовая работа: Построение матрицы достижимости

- sij=1, если vj достижима изvi и viдостижима изvj,

- sij=0, в противном случае.

Определение. Матрицей связности графа G называется квадратная матрица S(G)=[sij] порядка n, элементы которой равны

- sij=1, если существует маршрут, соединяющий vj и vi,

- sij=0, в противном случае.

Утверждение

Пусть G=(V,X) – граф, V={v1,…, vn}, A(G) – его матрица смежности. Тогда

S(G)=sign[E+A+A2+A3+… An-1] (E- единичнаяматрицапорядка n). (Следует из предыдущего).

Алгоритм выделения компонент сильной связности

1. Присваиваем p=1, S1=S(D).

2. Включаем в множество вершин Vp компоненты сильной связности Dp вершины, соответствующие единицам первой строки матрицы Sp. В качестве матрицы A(Dp) возьмем подматрицу матрицы A(D), состоящую из элементов матрицы A, находящихся на пересечении строк и столбцов, соответствующих вершинам из Vp.

3. Вычеркиваем из Sp строки и столбцы, соответствующие вершинам из Vp. Если не остается ни одной строки (и столбца), то p- кол-во компонент сильной связности. В противном случае обозначим оставшуюся после вычеркивания срок и столбцов матрицу Sp+1, присваиваем p:=p+1 и переходим к п. 2.

Текст программы (с комментариями)

PROGRAMG_r_a_p_h;

Uses CRT;

const MaxNodes = 5; { Количество вершин в графе }

type NodePtr = 1..MaxNodes;

Element = 0..1;

AdjMatrix = Array [NodePtr,NodePtr] of Element;

var Adj : AdjMatrix; { Матрицасмежностей }

Path: AdjMatrix; { Матрицадостижимости }

i,j : NodePtr;

PROCEDURE P_r_o_d (A,B: AdjMatrix; var C: AdjMatrix);

{ Матрица C получает значение булевского }

{ произведения матриц A и B }

var Val : Element;

i,j,k: Integer;

BEGIN

For i:=1 to MaxNodes do

К-во Просмотров: 383
Бесплатно скачать Курсовая работа: Построение матрицы достижимости