Курсовая работа: Поведение металлов при повышении температуры

Значительный интерес представляет исследование закономерностей
протекания собирательной рекристаллизации аустенита при прямом наблюдении за одним и тем же участком на поверхности образца.

В проводившихся ранее работах по изучению изменения размеров
зерен, аустенита при нагреве процесс роста зерен аустенита обычно рас-
сматривали как непрерывный, протекающий с постепенно возрастающей
скоростью по мере повышения температуры. Были предприняты
попытки установить математическую связь между скоростью роста зерен аустенита и скоростью нагрева. При этом предполагалось, что характер изменения размеров зерен подчиняется сравнительно простой
математической закономерности. Ряд экспериментальных работ, выполненных автором совместно с Е. И. Антиповой, позволил установить, что кинетика процесса рекристаллизации аустенита разных сталей может быть различной.
Можно считать установленным, что на характер про-
цесса рекристаллизации аустенита основное влияние оказывает химический состав стали, ее предварительная деформация и термическая обработка, которые могут вызвать фазовый (внутренний) наклеп, создающий большие внутренние напряжения и приводящий при определенных условиях к быстрому
«скачкообразного» росту зерен.
Прямым наблюдением в микроскоп за одним и тем же участком
образца при различных постепенно повещающихся температурах уста-
новлено, что существуют по крайней мере четыре различные кинетики
процесса рекристаллизации.
На рис. 1 приведен схематический график, иллюстрирующий на-
блюдаемые в микроскоп закономерности рекристаллизаций аустенита.
Например, кривая 1 характеризует процесс рекристаллизации, протекающий в виде монотонного увеличения размера зерен аустенита, посте-
пенно ускоряющегося по мере роста температуры. Такая кинетика наблюдается преимущественно при исследовании микростроения отожженных образцов, имеющих минимальные остаточные напряжения внутри
зерен или на их границах. В ряде случаев процесс рекристаллизации по
данной кинетике протекает и в деформированных образцах, что может
свидетельствовать о возможности монотонного роста зерен даже при
наличии внутренних напряжений. Необходимо обратить внимание на
некоторую особенность процесса рекристаллизации аустенита, проявляющийся в виде «скачкообразного» увеличения размера зерен при
определенной «критической» температуре. При этом изменение температуры всего лишь на несколько градусов приводит к возрастанию площади зерен в плоскости шлифа во много десятков и даже сотен раз.
Такое изменение размеров зерен, иллюстрируемое кривой 2 на рис. 1,
объясняется преодоление определенного энергетического барьера. На
этот процесс скачкообразного роста размеров зерен, возможно, оказывает влияние наклеп, возникающий в зернах в процессе предварительной
термической и механической обработки.

Рис.1. Характер изменения средней величины зерна аустенита в зависимости от температуры нагрева


Нередко процесс рекристаллизации сопровождается не одним, а
двумя резкими скачкообразными возрастаниями величины зерен (кривая 3 на рис. 1). Такое изменение размеров зерен может быть связано с преодолением двух энергетических барьеров, соответствующих
различным температурам. При этом до двух определенных значений температуры происходит медленный, постепенный рост зерен аустенита,
проявляющийся в увеличении одних зерен за счет уменьшения соседних.
Затем, после достижения известного температурного интервала порядка
нескольких градусов, возникают условия, при которых отдельные зерна,
обладающие, по-видимому, наиболее благоприятно ориентированным
расположением кристаллической решетки, «присоединяют» к себе боль-
шие участки соседних зерен и даже целые зерна. Такое двукратное скачкообразное увеличение размеров зерен аустенита при определенных
значениях температуры происходит в образцах, предварительно прошедших механическую обработку давлением и термическую обработку
и не подвергавшихся отжигу для снятия остаточных напряжений.
Представляет интерес особенность процесса рекристаллизации
аустенита, проявляющаяся в виде закономерности, иллюстрируемой
кривой 4 (рис. 1). При этом в начале нагрева повышение температуры
вызывает некоторое увеличение размеров зерен, а затем при достижении определенного значения температуры внутри отдельных крупных
зерен аустенита возникают новые, более мелкие зерна, которые образуются как бы из новых центров кристаллизации. Последующее повышение температуры всего на несколько градусов вызывает резкое увеличение размеров этих новых зерен, тогда как после прохождения этого
температурного интервала дальнейшее повышение температуры приводит к медленному возрастанию размеров зерен аустенита.
Повышение температуры нагрева рассматриваемого образца до
950 ºС и выдержка при этой температуре в течение 10 мин. приводят к
Увеличению размера зерен до 805 мк2 , тогда как при 1000 ºС (выдержка
10 мин.) величина зерен аустенита резко возрастает более чем в 20 раз
и составляет около 9400 мк2 .
Дальнейшее повышение температуры до 1050 ºС и выдержка в течение 10 мин. вызывают увеличение размеров зерен до 13800 мк2
Микрофотографии снимали соответственно при 1100 и 1200 после 10 мин. выдержки при каждой температуре. Средняя площадь зерен возросла до 18350 и 37300 мк2 . Дальнейшее повышение температуры всего на 50 ºС (до 1250 ºС) и выдержка в течение 10 мин. вызывают второй «скачок» в увеличении
плошади зерен: при этой температуре средняя площадь зерен возрастает
понтии 10 раз и составляет 357500 мк2 .
При определенной температуре размеры зерен аустенита уменьшаются, а затем быстро растут. В участке образца,
снятом при 1150 ºС, выявлены широкие гарнцы крупных зерен аустенита. Внутри этих зерен можно заметить следы старых границ зерен, су-
ществовавших ранее, при более низкой температуре. В зоне, отмеченной
стрелкой и имевшей температуру 1180 ºС, видны очерченные тонкими
границами новые зерна, возникшие при этой температуре и образовав-
шиеся как бы из новых центров кристаллизации. Увеличение темпера-
туры всего на 20 ºС (до 1200 ºС) приводит к резкому увеличению этих новых зерен в табл. 2 приведены средние величины площади зерен
аустенита а ряде, исследованных нами сталей.


Табл. 2

Темпе-

ратура

ºС

Средняя площадь, мк2 , зерен аустенита сталей
20 45 12Х2Н4А 20Х ЭИ395 18ХГТ

900

950

1000

1050

1075

1100

1125

1150

1175

1200

835

910

19500

31700

40150

41800

57600

60500

73200

715

805

9400

13800

14100

18350

20900

32100

37300

210

262

575

3640

8350

17400

21000

415

1655

3340

6150

11500

12150

810

1120

3010

6850

8400

13800

18100

25940

3590

40720

105

130

165

404

1240

5940

11080

Рис.2 .Изменение средней площади зерен образца стали ЭХ18Н9.

Влияние температуры на статистические

механические характеристики металлов.

Многие детали машин, аппаратов, конструкций, инструмента работают в диапазоне температур, значительно отличающихся от нормальной (комнатной) температуры. Поэтому при выведении детали на рабочий режим, т. е. при нагреве или охлаждении от нормальной температуры могут существенно измениться механические свойства материала. Для обеспечения конструктивной нанежности подобных элементов необходимы сведения о закономерностях изменения механических свойств и широком интервале температур. Однако несмотря на практическую важность и многочислен-
ность исследований эти зависимости слабо освещены теоретически и часто представляются чисто эмпирическими.

Эксперименты свидетельствуют о весьма сложной зависимости механических свойств от температуры. Это обусловлено тем, что кроме чисто физического воздействия, которое изменяет амплитуду тепловых колебаний атомов, активационный объем и механизмы пластической деформации, изменение температуры вызывает различные сопутствующие физические процессы. Например, упорядочение твердого раствора, образование зон типа Гинье — Престона, выделение дисперсных частиц и их коагуляция, рост зерен и полиморфные превращения в матрице и т. и. Огромное влияние на физико-механические характеристики металлов и сплавов при вы-
соких температурах оказывают процессы возврата и рекристаллизации, происходящие в момент механических испытаний. Приведенные данные еще раз подтверждают хорошо известный факт, что уровень механических характеристик зависит как от физического состояния и природы металла или
сплава, так и сопутствующих процессов в Матрице и упрочняющей фазе, эффект от которых отделяется условиями механических испытаний.
Для удобства изложения зависимости статических механических свойств от температуры испытаний рассматриваются отдельно для металлов с ГЦК- и ОЦК-решетками соответственно в структурно-стабильном и структурно-неустойчивом состояниях.

Влияние температуры на вид диаграмм и предел
текучести стабильных металлов с ГЦК-решеткой.
Компоненты предела текучести
.

Температура оказывает влияние как на величину характеристик прочности и пластичности, так и на вид диаграмм деформирования. В зависимости от температурного интервала механических испытаний для поликристаллических структурно-стабильных сплавов. М. В. Якутович и В. А. Павлов
выделяют два: вида диаграмм «нагрузка — деформация» : низкотемпературную и высокотемпературную. К отмеченным видам диаграмм следует
добавить еще один — промежуточный. Характерным признаком низкотемпературной диаграммы Р- является наличие
довольно резко выраженного предела текучести и отсутствие участка деформации с уменьшающимся усилием. Разрушение происходит при максимальной нагрузке, на образце перед разрушением шейка не возникает.
На высокотемпературной диаграмме физический предел текучести отсутствует, но отмечается четко выраженный максимум по нагрузке, расположенный, ближе к начальному участку диаграммы. Разрушение сопровождается образованием шейки, т. е. отмечается местное уменьшение поперечного сечения образца. Участок диаграммы с постепенно уменьшающимся усилием деформации имеет тем большую протяженность по степени деформации, чем выше температура и больше относительное
сужение поперечного сечения: при Ψ→100% усилие в мо-
мент разрушения приближается к нулю. Промежуточный вид диаграмм имеет признаки как низко температурной, так и высокотемпературной диаграммы. Подобно диаграмме, первого типа на промежуточной диаграмме имеется выраженный предел текучести, подобно диаграмме второго типа — максимум по напряжениям и деформация с уменьшающимся усилием. Последнее является следствием возникновения на образце шейки.

Вид диаграмм деформирования монокристальных образцов ГЦК-металловсущественно меньше зависит от температуры испытаний. Независимо от температуры на истинных диаграммах «напряжение сдвига — относительный сдвиг» можно отметить наличие трех стадий пластической деформации: 1 — легкого скольжения, 2 — множественного скольжения, 3 — скольжения с переползанием (рис. 3). Следует заметить, что температура оказывает влияние на протяженность стадий. Наиболее четко все три стадии деформации наблюдаются при механических испытаниях в среднем интервале температур
200>Ти >50 К. С понижением температуры увеличивается степень деформации по механизму легкого и множественного скольжения (1 и 2)
стадии сокращается степень деформации по механизму переползания.
Поэтому для низкотемпературной диаграммы 3 стадия деформации выражена слабо или совсем отсутствует. Высокотемпературная диаграмма, наоборот, характеризуется отсутствием 1 стадии, степень деформации по механизму множественного скольжения обычно невелика. Деформация происходит, главным образом, по механизму скольжения с переползанием. По этой причине в процессе испытаний при температурах. выше 300 К, когда процессы деформационного упрочнения и разупрочнения ( за счет возврата или рекристаллизации) происходят одновременно, параболический участок
кривой τ — g может выродиться в горизонтальную прямую. В некоторых случаях может наблюдаться деформационное (динамическое) разупрочнение и соответственно на диаграммах τ — g появляется максимум τ и ниспадающий участок.
Сопоставляя диаграммы деформирования (рис.3 и 4), можно заметить и количественные закономерности изменениямеханических характеристик по мере изменения температуры. Видно, что с повышением температуры уменьшается величина модуля упругости, предела текучести, предела. прочности и характеристик пластичности.

Рис.3. Влияние температуры на закономерности деформационного упрочнения монокристаллов никеля

Физически величина модуля упругости Е определяется,
главным образом, силами межатомной связи и слабо зависит от наличия в структуре вторичных фаз. Модуль упругости приближенно можно считать обратно пропорциональным параметру решетки а:

(1)
С повышением температуры увеличивается амплитуда: тепловых колебаний ионов относительно точек равновесия в решетке металла, соответственно увеличиваются межатомные расстояния — параметры решетки. Как следствие, с ростом температуры модуль упругости должен уменьшаться. Температурный коэффициент η уменьшения модуля Е можно
установить по коэффициенту линейного расширения а, который является макроскопическим аналогом коэффициента теплового роста параметров решетки. Как показал Я. Б. Фридман, отношение η/а (температурного коэффициента модуля упругости и теплового расширения) для каждого металла
есть величина постоянная, равная -0,04. Учитывая, что коэффициент термического расширения большинства металлов колеблется в пределах (4,6 — 17) мк-1 , температурный коэффициент модуля упругости должен составлять 1 — 4.10-4 или 1— 4% на 100°С.

Эксперименты (рис.4) подтверждаются расчетами: при повышении темпе-
ратуры на 100 °С изменение модуля упругости составляет 2 — 4%.
Как следует из выражения (1) , зависимость Е и )
является параболической. Однако поскольку зависимость модулей упругости от температуры очень слабая, она часто представляется в виде прямой.

Рис. 4. Температурная зависимость модуля упругости металлов

Величина предела текучести GТ или критического напряжения сдвига τг имеет довольно сложную зависимость от температуры испытаний (рис.5). Как правило, понижение температуры приводит к увеличению предела текучести. Причем степень зависимости τТи ) определяется чистотой металлов. Для чистых металлов понижение температуры увеличивает критическое
напряжение τТ в меньшей степени, чем для сплавов. Увеличение содержания примесей и легирующих элементов сопровождается усилением температурной зависимости предела текучести. Качественно на кривой температурной зависимости τТи ) можно выделить три уча-
стка: 1 — низко-, 2 — средне- и 3 — высокотемпературный. Первый и третий участки характеризуются довольно значительной зависимостью τТ от температуры, на втором участке критическое напряжение практически постоянно.


Рис. 5. Влияние температур на предел текучести ГЦК – металлов.

Сложность температурном зависимости предела текучести
обычно связывается с различием механизмов Деформации и характера формирующихся дислокационных структур при различных температурах,; испытаний. Действительно, при различных температурах существенно изменяется вклад термических флуктуаций в величину сопротивления пластической деформации. Значительно различаются возникающие при равной деформации плотность дефектов кристаллического строения-вакансий, дислокаций; характер и устойчивость атмосфер и кластеров; размеры совершенство блоков мозаики. Для упрощения анализа температурной зависимости τТи ) предел текучести часто рассматривают как сумму трех независимых компонент; атермической τ G , термической τ* и структурной Ку

К-во Просмотров: 172
Бесплатно скачать Курсовая работа: Поведение металлов при повышении температуры