Курсовая работа: Поверхности второго порядка

Обозначим эти числа соответственно через a2 , b2 , с2 . Поcли несложных преобразований уравнение (2) двуполостного гиперболоида можно записать в следующей форме:

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим уравнением, то оси Ох, Оу и Оz называются его главными осями.

4. Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11 , а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка записывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0, a33 < 0. Обозначим

соответственно через а2 , b2 , с2 . Тогда уравнение (2) можно записать в виде

Уравнение (6) называется каноническим уравнением вещественного конуса второго порядка.

2. Классификация нецентральных поверхностей второго порядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид

11 х´2 + а´22 у´2 + a´332 + 2а´14 x´ + 2а´24 у´+2а´34 z´ +а´44 = 0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вычисленное для уравнения (7) , равно

11 • а´22 • a´33 , то один или два из коэффициентов a´11 , а´22 , a´33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


1. Один из коэффициентов a´11 , а´22 , a´33 равен нулю. Ради определенности будем считать, что a´33 = 0 (если равен нулю какой-либо другой из указанных коэффициентов, то можно перейти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

11 на a11 , а´22 на а22 , а´34 на pи а´44 на q, получим следующее уравнение поверхности S в новой системе координат Oxyz :

a11 х2 + а22 у2 + 2pz + q = 0 (9)


1) ????? ? = 0, q = 0. ??????????? S ??????????? ?? ???? ??????????

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22 одинаковы, и вещественными, если знаки a11 и а22 различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

a11 х2 + а22 у2 + q = 0 (10)

Известно, что уравнение (10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, aq — противоположный, то величины положительны.

Обозначая их соответственно через а2 и b2 , мы приведем уравнение (10) к виду

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду

К-во Просмотров: 940
Бесплатно скачать Курсовая работа: Поверхности второго порядка