Курсовая работа: Проектирование компрессионного холодильного оборудования
Для обеспечения нормального режима хранения продуктов в малом холодильном оборудовании (шкафах, прилавках, витринах и т. д.) необходимо соблюдать следующие требования:
— загружать продуты только после достижения заданной температуры в шкафу, прилавке, витрине;
— скоропортящиеся продукты, поступающие из холодильных камер, загружать в охлажденном состоянии;
— горячие блюда (молоко, закуски, компоты) устанавливать в шкафах, прилавках, витринах после предварительного их охлаждения до температуры окружающего воздуха;
— не превышать допустимую максимальную норму загрузки;
— не покрывать бумагой, марлей, фанерой полки шкафов, прилавков и камер, что препятствует свободному движению воздуха и нормальному охлаждению продуктов;
— укладывать и подвешивать продукты на некотором расстоянии друг от друга и на расстоянии от стенок 6-10 см;
— не хранить одновременно разнородные продукты, одни из которых обладают резким запахом (например, сельдь и сливочное масло, мясо и сыр, рыбу и мясо);
— открывать- двери шкафов, прилавков, камер следует возможно реже и на короткий срок, а затем плотно закрыть их.
Для проверки температуры в шкафу, прилавке, витрине, сборной и стационарной камерах устанавливают термометры.
Слой снеговой шубы на испарителях не должен превышать 4-5 мм. Между ребрами испарителя всегда должно быть свободное от инея пространство. При толщине инея 4—5 мм оттаивают иней с приборов охлаждения.
Недопустимо удалять снеговую шубу с испарителей ножами, скребками и другими предметами — это приводит к повреждению испарителей, утечке фреона из системы холодильной машины и выходу ее из строя. Если в холодильном оборудовании нет продуктов, то холодильные машины выключают.
2. компрессорные холодильные машины
Нами приведены лишь общие данные о новых компрессорных машинах, необходимые для определения основных размеров холодильных установок и станций, расходов энергии и воды в объеме, необходимом для начальных стадий проектирования СКВ. Принципиальные схемы фреоновых поршневых холодильных машин приведены на рис. 1. Перегретые пары хладагента засасываются из испарителя компрессором и поступают в конденсатор — водяной (рис. 1, а) или воздушный (рис. 1,б).
Рис. 12.10. Принципиальные схемы фреоновых поршневых холодильных машин
а — с конденсатором водяного охлаждения;
б — с конденсатором воздушного охлаждения;
1 — испаритель; 2 — компрессор;
3 — конденсатор водяного или воздушного охлаждения;
4 — запорный вентиль; 5 — ресивер;
6 — фильтр-осушитель; 7 — соленоидный вентиль;
8 — терморегулирующий вентиль;
РД — реле давления; РКС — реле контроля смазки;
г — газообразный фреон; ж — жидкий фреон; м — масло
Далее жидкий хладагент, пройдя через запорный вентиль 4, из воздушного конденсатора попадает в ресивер, а из водяного — прямо в фильтр–осушитель. Затем через соленоидный вентиль 7 и терморегулирующий вентиль 8 хладагент направляется в испаритель. Режим работы холодильной машины определяется температурами: 1) кипения хладагента t0, которая задается исходя из условий работы СКВ; 2) конденсации tк, принимаемой на 3–4° выше температуры воды, уходящей из конденсаторов; 3) переохлаждения агента tп, принимаемой на 1–2° выше начальной температуры воды, подаваемой в конденсаторы. Сравнение производительно-стей холодильных машин заключается в приведении их к одинаковым условиям, т.е. к одинако вым температурам испарения t0, всасывания tв, конденсации tк, а также к температуре перед регулирующим вентилем tb Вместо четырех сравнительных температур часто пользуются только тремя: t0, tк, tb. Расчет холодильной машины производится с помощью схемы холодильного цикла, который строят на I–lgp диаграмме (рис. 2.).
Рис.2. Цикл холодильной машины в энтальпийной I–lgp—диаграмме
1–2 — адиабатическое сжатие;
2–2′ — охлаждение в конденсаторе при tк = const;
2′–3′ — конденсация при tK—const;