Курсовая работа: Проектирование вторичного источника питания

В источниках питания приемно-усилительной аппаратуры применяются выпрямители однополупериодные, двухполупериодные с выводом средней точки и мостовые. Чаще всего они выполняются со сглаживающим фильтром, начинающимся с конденсатора, то есть работают на емкостную нагрузку. Такие выпрямители используются для получения выпрямленных напряжений от единиц вольт до десятков киловольт.

Однополупериодную схему выпрямителя применяют при мощноcтях в нагрузке до 5...10 Вт и тогда, когда не требуется малый коэффициент пульсаций. К достоинствам этой схемы можно отнести – минимальное число элементов, невысокую стоимость, а к недостаткам – низкую частоту пульсаций (равна частоте питающей сети ), плохое использование трансформатора, подмагничивание его магнитопровода постоянным током.

Двухполупериодную схему с выводом средней точки применяют чаще всего при мощностях до 100 Вт и выпрямленных напряжениях до 400...500 В. Выпрямители, выполненные по этой схеме, характеризуются повышенной частотой пульсаций, возможностью использования вентилей с общим катодом, что упрощает их установку на общем радиаторе, однако для них характерно повышенное обратное напряжение на вентилях и более сложная конструкция трансформатора.

Мостовая схема характеризуется хорошим использованием мощности трансформатора, повышенной частотой пульсаций, низким обратным напряжением на вентилях, возможностью работы без трансформатора, но для нее свойственно повышенное падение напряжения в вентильном комплекте.

В итоге, выбираем мостовую схему, так как у нее меньший, по сравнению с однополупериодной схемой, коэффициент пульсаций, меньше в 2 раза, по сравнению с другими схемами, обратное напряжение на вентилях, кроме того, вторичная обмотка имеет меньше витков и не требует делать вывод от среднего витка, что упрощает и удешевляет конструкцию.

Сглаживающие фильтры включают между выпрямителем и нагрузкой для уменьшения пульсаций (переменной составляющей) выпрямленного напряжения. Как правило они состоят из звеньев, образованных последовательно-параллельным соединением индуктивных катушек L, конденсаторов С и резисторов R.

Основное требование, предъявляемое к фильтру – при минимальных собственных размерах и массе максимально уменьшить переменную составляющую выпрямленного напряжения, не увеличивая при этом сопротивление постоянной составляющей. Эффективность сглаживания пульсаций оценивается коэффициентом сглаживания g, который представляет собой отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе

. (2.1)

При больших токах нагрузки наиболее целерe9 _eбразным является применение Г-образного индуктивно-емкостного фильтра, несмотря на большую стоимость и габариты, так как емкостной фильтр не эффективен при больших токах нагрузки, увеличивает обратное напряжение на вентилях и не обеспечивает заданного коэффициента сглаживания, индуктивный фильтр в маломощных выпрямителях имеет значительные габариты и массу, в RC фильтре создается относительно большое падение напряжения и имеют место значительные потери энергии в резисторе . Коэффициент полезного действия LC-фильтровдостаточно высокий, а коэффициент сглаживания равен произведению коэффициентов сглаживания L- и C-элементов :

. (2.2)

Подсчитано, что для выпрямителей с коэффициентом сглаживания g³ 25 целесооб-разно применять многозвенный (двухзвенный) фильтр [2], как показано на рисунке 2.1,так как при этом произведение суммарной индуктивности дросселей на суммарную емкость конденсаторов будет меньше произведения LC однозвенного фильтра, имеющего такой же коэффициент сглаживания .

Рисунок 2.1 – Двухзвенный LC фильтр .

Стабилизаторами напряжения называют устройства, автоматически поддерживающие напряжение на нагрузке с заданной степенью точности.

Основными параметрами , характеризующие качество стабилизации, являются коэффициент стабилизации по выходному напряжению


,

внутреннее сопротивление стабилизатора

,

коэффициент сглаживания пульсаций

.

В зависимости от рода напряжения их подразделяют на стабилизаторы переменного и постоянного напряжений, кроме того они подразделяются на стабилизаторы параметрические и компенсационные.

Полупроводниковые параметрические стабилизаторы (ППС) наиболее простые. Они характеризуются сравнительно невысокими коэффициентами стабилизации, большим выходным сопротивлением (единицы и десятки Ом), низким КПД. В таких стабилизаторах не возможно получить точное значение выходного напряжения и регулировать его, что нам на подходит.

Компенсационные стабилизаторы напряжения (КСН) относятся к стабилизаторам непрерывного действия и представляют собой устройство автоматического регулирования, которое с заданной точностью поддерживает напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки . Эти стабилизаторы могут стабилизировать напряжение при больших токах нагрузки, чем параметрические, и отличаются большим коэффициентом стабилизации и меньшим выходным сопротивлением.

Сами компенсационные стабилизаторы напряжения делятся на стабилизаторы последовательного типа ( регулирующий элемент подключен последовательно нагрузке) и параллельного типа (регулирующий элемент подключен параллельно нагрузке, используются для стабилизации напряжения до 5...6 В). Последовательный тип характеризуется большим КПД, чем параллельный, однако критичен к режиму короткого замыкания, поэтому выбираем последовательный тип.

Структурные схемы двух типов стабилизаторов приведены на рисунке 2.2 .

Рисунок 2.2 – Структурные схемы двух типов компенсационных стабилизаторов.

1 – источник опорного напряжения .

2 – сравнивающий усиливающий элемент.

К-во Просмотров: 365
Бесплатно скачать Курсовая работа: Проектирование вторичного источника питания