Курсовая работа: Производство силикатного кирпича с центролизованной подготовкой силикатной смеси

Для улучшения качества и потребительских свойств
рекомендуется производить, наряду со стандартным известково-песчаным кирпичом, известково-зольный кирпич, а также различные красители.

Известково-зольный кирпич содержит 20…25% извести и 75…80% золы. Технология изготовления такая же, как и известково-песчаного кирпича. Плотность – 1400… 1600 кг/м3 , теплопроводность – 0,6…0,7 Вт/(м/С). Кирпич используют для строительства малоэтажных зданий, а также для надстройки верхних этажей.

Силикатный кирпич не уступает керамическому при строительстве зданий и сооружений, а по некоторым и превосходит его:

обладает высокой морозостойкостью;

обладает высокими противопожарными свойствами;

относится к группе несгораемых материалов;

поддерживает комфортный температурно-влажностный режим за счет «дышащих» стен;

Удобен в работе, т. к. обладает хорошими геометрическими формами.

Силикатный кирпич обладает хорошими эстетическими свойствами – он может применяться в качестве облицовочного, внося разнообразие в архитектуру наших городов и поселков.

В данной курсовой работе рассматривается цех по производству силикатного кирпича мощностью 105.000.000 шт. условного кирпича в год. Силикатный кирпич относится к группе автоклавных вяжущих материалов. Силикатный кирпич применяют для кладки стен и столбов в гражданском и промышленном строительстве, но его нельзя применять для кладки фундаментов, печей, труб и других частей конструкций, подвергающихся воздействию высоких температур, сточных и грунтовых вод, содержащих активную углекислоту.

По назначению кирпич и камни разделяют на рядовые и лицевые, по видам изготовления – на пустотелые, пористые (с пористым заполнителем), пористо-пустотелые и полнотелые. Лицевые кирпичи и камни могут быть неокрашенными и цветными – окрашенными в массе или с поверхностной отделкой лицевой грани. По теплотехническим показателям и плотности в сухом виде кирпич и камни делят па три группы: эффективные – кирпич средней плотностью не более 1400 кг/м3 камни не более 1450 кг/м3 и теплопроводностью до 0,46 Вт/(м*К) (0,4 ккал/м*ч°С); условно эффективные – кирпич средней плотностью 1401–1650 кг/м3 , камни средней плотностью 1451–1650 кг/м3 и теплопроводностью до 0,58 Вт/ /(м*К) (0,5 ккал/м* ч°С); обыкновенный силикатный кирпич плотностью свыше 1650 кг/м3 и теплопроводностью до 0,7 Вт/ (м • К) (0,6 ккал/м*ч °С).

Для силикатного кирпича и камня существуют следующие марки по прочности: 300, 250, 200, 150, 125, 100 и 75. Лицевые изделия должны иметь марки: кирпич не менее 125 и камни не менее 100. По морозостойкости кирпич и камни подразделяют на марки: Мрз 50, Мрз 35, Мрз 25 и Мрз 15. Морозостойкость лицевых изделий должна быть не ниже 25. Более одной трещины на рядовом кирпиче и камне, пересекающей два смежных ребра одной ложковой грани и протяженностью до 40 мм по постелям, не допускается. Изделий с такими трещинами в партии не должно быть более 10%. В партии лицевых изделии должно быть половинок не более двух, а в партии рядовых – не более 3%. Общее число отбитостей, в партии должно быть не более 5%. Потеря прочности образцов кирпича и камней при сжатии после испытания их на морозостойкость не должны быть более 25% для рядовых изделий и 20% для лицевых. Водопоглощение – кирпича и камня должно быть не менее 6%.

2. Технология производства

Технологические схемы и оборудование для производства силикатного кирпича. Две схемы: с централизованной подготовкой силикатной смеси и с раздачей ее по бункерам и смешанная схема с централизованным дозированием компонентов, их первичным перемешиванием к индивидуальной вторичной обработкой массы для каждого пресса. Первая схема предпочтительна. Для заводов большой мощности, вторая – для заводов с двумя-тремя прессами.

Для дозирования сыпучи компонентов силикатной смеси предназначены весовые дозаторы с ленточным конвейером, обеспечивающие точность дозирования до +1%.

Первичное смешение вяжущего с песком осуществляют тихоходными двухвальными смесителями СМ‑246 и СМК‑120 или быстроходными лопастными двухвальными смесителями СМС‑95.

Лопастный смеситель первичного смешения компонентов снабжен перфорированными трубками для подачи воды и острого пара. В смесителях СМС‑95 и ИБ‑27 воду подают через распылители для улучшения качества смеси.

Гашение извести в смеси с песком происходит в аппаратах периодического или непрерывного действия. К первым относят гасильные барабаны. Его вместимость 15 м3 ; мощность привода 14 кВт; рабочее давление 0.5 МПа; общая длительность цикла гашения извести 50–60 мин, в том числе длительность гашения при повышенном давлении 30–35 мин. На современных и строящихся предприятиях гашение извести в смеси с песком осуществляют в силосах-реакторах непрерывного действия. При этом совмещают два технологических процесса – гашение тонкомолотой извести и усреднение (гомогенизация) силикатной смеси. Кроме того, силос является буферной емкостью, обеспечивающей надежность снабжения прессов смесью. В реакторе гашеная смесь опускается через кольцевую щель между разгрузочной воронкой и конусом на неподвижное днище, с которого она сгребается серповидным ножом в отверстие по центру днища.

НИПИСиликатобетон разработал на том же принципе реактор, отличающийся конструктивным оформлением выгрузочного узла и наличием двух серповидных ножей. ВНИИСтром разработал конструкцию силоса-реактора, в котором рабочим органом разгружателя служат вибрирующие многоэтажные решетки, расположенные внутри конуса реактора.

Для растирания комочков извести, глины и дальнейшего

усреднения смеси применяют смесительные дезинтеграторы, лопастные двухвальные смесители с обычной и повышенной частотой вращения, противоточные стержневые смесители, бегуны, стержневые мельницы, валковые смесители-растиратели. В последнее время наибольшее распространение получили стержневые смесители. Смешение и растирание компонентов смеси в них происходит во вращающемся барабане, содержащем металлические стержни, каскадное движение которых и вращение вокруг своей оси обеспечивают необходимый эффект. Барабан смесителя может быть расположен горизонтально или под углом до 10°. В зависимости от наличия в смеси глинистых к других включений и их твердости удельная производительность стержневых смесителей колеблется от 8 до 14 т/м3 -ч. Одна из важных операций в процессе производства силикатного кирпича – его формование. На прочность сырца основное влияние оказывают давление и время прессования, содержание о составе формуемой смеси тонкодисперсных частиц, суммарная удельная поверхность смеси, оптимальная ее влажность и др. С увеличением давления прессования в два раза прочность сырца повышается на 35–40%. Длительность прессования положительно сказывается на прочности сырца при малых удельных давлениях прессования. По мере увеличения до 30–40 МПа коэффициент уплощения сырца, сформованного с различной скоростью, приближается к единице, что ведет к увеличению прочности сырца. Введение в состав силикатной смеси тонкодисперсных частиц в виде тонкомолотого известково-песчаного вяжущего с удельной поверхностью 5000–6000 см2 /г увеличивает прочность сырца от 0,2 до 0,6 МПа.

Укрупняющие добавки в виде высевок при дроблении и сортировке гранита, известняка и других горных пород вводят при использовании мелких песков однородной гранулометрии.

Формовочная влажность силикатной смеси составляет 4–8%, причем ее увеличивают пропорционально ее удельной поверхности и удерживают в пределах 5–6%. Запрессовка воздуха – одна из причин расслоения сырца, снижение его прочности и увеличение трещинообразования.

Для ее предотвращения подбирают оптимальный гранулометрический состав смеси и конструкцию пресс-формы для быстрого снятия бокового давления сырца на стенки формы. По этим причинам некоторые изготовители прессов предусматривают уширение формовочных гнезд в сторону выталкивания кирпича. В состав основного технологического оборудования прессовых отделений входит пресс для формования кирпича-сырца, автомат-укладчик для съема с пресса и укладки на автоклавную вагонетку, толкатель для подачи порожних вагонеток и откатки груженых вагонеток в зоне действия автомата-укладчика и электрооборудование дистанционного и автоматического управления.

В револьверных прессах (СМ‑152, СМ‑186) усилие от коленчатого вала через дифференциальный рычаг и прессующий рычаг, качающийся на опорной оси, передастся прессующему поршню и штампам, размешенным в формовочных гнездах револьверного стола. Штампы сжимают находящуюся в гнездах смесь, и она давит на неподвижный контрштамп, закрепленный на траверсе, которая связана мощными болтами со станиной пресса. Смесь подается в гнезда стола наполнительным устройством, снабженным вращающимися лопастями. Одновременно в разных местах стола заполняют, прессуют и выталкивают из гнезд по два сырца. Затем стол поворачивают на 45, и цикл повторяется.

Другие фирмы выпускают револьверные прессы с коленорычажным механизмом. При такой конструкции прессующего механизма и револьверного стола длительность формования смеси можно увеличивать в 2 раза и одновременно передавать удельное давление сырцу 30 МПа и более. На таких прессах формуют до шести сырцов стандартного размера на ребро или до четырех пустотелых камней высотой 138 мм.

Отечественные предприятия оборудованы в основномI револьверными механическими прессами СМ‑481, СМ‑186 и СМ‑152.

Прессы СМ‑481 и СМ‑816 имеют недостатки.

Коленорычажный механизм прессования при вращении стола с частотой 3,2 мин-1 не обеспечивает необходимое время прессования и его хорошее уплотнение; стол и пресс-формы, составляющие единое целое, ненадежны в эксплуатации; принятое расположение пресс-форм и штампов, конструкция мешалки и другие недостатки не позволяют формовать многопустотный кирпич. В прессе СМС‑152 усилены станина, стол, прессующий рычаг и привод.

К-во Просмотров: 523
Бесплатно скачать Курсовая работа: Производство силикатного кирпича с центролизованной подготовкой силикатной смеси